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AMS Subj. Classification: 30D30, 30D35
Key Words: meromorphic functions, Nevanlinna’s theory, counting and ignoring mul-
tiplicities

1. Introduction, definitions and main result

Let f,g be two nonconstans mermorphic functions defined in the open
complex plane. If f, g have the same a-points with the same multiplicities we say
that f, g share the value CM (counting multiplicities) and if only the locations
(not necessarily the multiplicities) of the «-points of [, g are same we say that
[, g share the value IM (ignoring multiplicities).

In the paper we do not explain the standard notations and definitions
of Nevanlinna’s theory of meromorphic functions. Let E denote the exceptional
set of finite linear measure that arises in the second fundamental theorem.

Ozawa [3] proved the following result.

Theorem A. If f,g are entire functions of [inile orders sharing 0,1
CM and §(0; f) > }, then f-g =1 unless [ = g.

Withdrawing the order restriction in Theorem A, Ueda [1] proved the
following more general theorem.

Theorem B. If f,g share 0,1,00 CM and

tmsup N(r,o;{()r + 201

A
2’

then either f-g=1,0r f=g.
In [5] Yi further improved Theorem A to the following result.
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Theorem C. If f,g share 0,1,00 CM and N(r,0; f) +7\7(r f) <A+
o(1)T(r, f)(r — oo, r ¢ E), where A <3 ! y then [-g =1 unless [ =

Yi [6] also gave another nnplovomem of Theorem A, stated l)olow with
using the following notation.

Notation 1. For a complex number a, finite or infinite, we denote
by N(r,a; f,= 1) the counting function of simple zeros of f — a.

Theorem D. ([6]) If f,g share 0,1,00 CM and N(r,0;f = 1) +
N(r,o00; fy=1) < (A+o(1)) max{T(r, ), T(r,9)}(r — oo, & IV). where A < 1
then either f-g=1or f=g.

We see in above theorems that attempts are made to relax the hypotheses
of Theorem A on the nature of the functions, the order of the functions and on
the deficiency of a function at the origin. So far, the author knows no attempts
made till now to relax the hypotheses of Theorem A on the nature of sharing
the values. In the paper we make such an attempt. Before stating our result we
give some more notations.

Notation 2. We denote by N(r,a; f.> p) the counting function of
distinct zeros of f — a of multiplicities not less that p.

Notation 3 ([1]). By Ni(r,a; f) we denote the counting function of
the zeros of f — a, where a zero of multiplicity p is counted p times, if p < k and
k times, if p > k. Clearly, N(r,a; f) = Ny(r,a; [) < Ni(rya; f) < N(r,a; f) for
k=1,2,3,...

Notation4. Let fi, fa,..., fu be meromorphic functions. We denote
by S(7; f1, f2,..., fa) a real valued function of the nonnegative real variable »
such that

S(r fus fas- v Ju) = 0 Q_T(r, [i)} as v — oo(r ¢ 1),
i=1
In the paper we prove the following result.

Theorem. Let

(i) f,g share 0 IM and 1,00 CM;

(ii) f, g have the same set of simple zeros;

(m) No(r,0; )+ N(r, f) < {A+0(1)}-T(r,f) as r — oo(r ¢ I7), where
A< 2 Then either: (a) f =1, or (b) [-g= 1. Further, if

(iv) f has at least one zero or pole, the case (b) does not arise.
The example f = 3exp(z)—9exp(22),9 = -;-e\p(—-)-§('\p( 2z) shows

that condition (iii) is the best possible. Also, the functions f = eap(z),g9 =
exp(—z) show that condition (iv) is necessary for non-occurrence of case (b).
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2. Lemmas
First we give some lemmas necessary for the proof of the main theorem.

Lemma 1. If f,g share 0,1,00 IM, then T(r,f) = O(T(r,g)) and
T(r,9)=O(T(r,f)) forr ¢ E.

Proof. By the second fundamental theorem we get
T(r,f) < N(r,0; /) + N(r, 15 /) + N(r, [) + S(r, ]),
i.e., A
{1 +0(1)}T(r, f) < N(r,0;9)+ N(r,1;9) + N(r,9)
<3T(r,g) forr¢ E,

wich shows that T'(r, f) = O(T'(r,g)) for r ¢ E. Similarly the other result can
be proved. This proves the lemma. - ]

Le_xp_nm 2. If_(il, ¢a, €3 are nonzero conslants and ¢y f + ca9 = c3, then
T(r,f) < N(r,0; f)+ N(r,0;9) + N(r, [) + S(r, f) for r ¢ E.
Proof. By the second fundamental theorem we get

T(r,f) < N(r,0; f)+ N(r,es/c1, )+ N(v, f) + S(r, [)

= N(r,0; f) + N(r,0;9) + N(r, f) + S(r; f)
and this proves the lemma. (]

Lemma 3. If f,g share zero IM and lhey have the same set of simple
zeros then Ny(r,0;9) = No(r,0; f).
Proof. Now,

Ny(7,0;9) = N(r,0;9,= 1) + 2N(r,0; 9,> 2)

= N(r,0; f,= 1) + 2N(r,0; f,> 2) = No(r,0; /).
This proves the lemma. [

Lemma 4. Let fy, f2, f3 be nonconstant meromorphic functions and D
be their Wronskian determinant. Then

3 3
Y_N(1,0,f) = N(r.0,D) < 3~ No(,0; fy).

i=1 i=1
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Proof. Since if 2 is a zero of f; of multiplicity p(> 2), it is a zero of D
of multiplicity p — 2, it follows that

3 3
ST N(r,0,£) - N(r,0;D) < 3 Ny(r,0, fi).

=1 i=1
This proves the lemma. @

Lemma 5. Let fi, f2, [3 be nonconsisnt meromorphic funclions such
that fy + f2 + f3 = 1. If D is the Wronskian dclerminant of fi, [2, [3, then

3
N(r'; ft) + N(T, D) o E N(.T, fl) < 2{TV-(T, fJ) + —ﬁ(‘l‘, fk)}7
=1
where j # k; j,k € {1,2,3}\ {i} and i € {1,2,3}.
Proof. For the sake of definiteness, we choose i = 1 and the other two
cases are similar. First we note that

Yifs . Js
D=|0 fi fa|=[f7-L"3=f"3:-["5
0 f2 fs

and thus so the poles of D occur only at the poles of f, and f3. If zg is a pole
of fa, f3 of multiplicities ¢z, g3 respectively, then it is a pole of D ol multiplicity
g2 + g3 + 3 and if 2 is a pole of f;(j = 2,3) of multiplicity p;, then it is a pole
of D of multiplicity at most p; + 2. Therefore, N(r,D) < N(r, f2) + N(r, f3) +
2N(r, f2) + 2N(r, f3) and the lemma is proved. ]

Lemma 6. Let fy, foy...y fn be linearly independent meromorphic
Junctions satisfying 37—y fi = 1. Then for j = 1,2,...,n we gel

T(r, f;) < Y N(r,0; f;) + N(r, f;) + N(r, D)= 3 N(r, fi) = N(r,0, D)
=1 i=1

+S(r9f19f2a---’fn) anr-—»oo(r¢ E),
where D is the Wronskian determinant of [y, [2,... [u.

3. Proof of the theorem
We put h = ;: i Then h # 0 and since f, g share 1,00 C'M, it follows

that N(r,0,k)+ N(r,h)= S(r, f,9). Also we put
(1) h=ffa=h and f3=—gh sothat [y + o+ f3 = L.
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If fi, f2, f3 are linearly independent, by Lemma 6 and Lemma ’1 we get
because T'(r,h) < T'(r, f) + T'(r, g) + O(1),

3 3
T(r9fl) S ZN(rvo;fl) + N(rsfl)"' N(T,D)_ ZN(rofi)
=1 i=1
—N(T, 07 D) + S( r, f)‘
Now by Lemma 4 and Lemma 5 we obtain
3 .
T(r, f) £ 3_ Na(r,0; £;) + 2N(r, k) + 2N(r; gh) + S(r, /).
=1
Finally by Lemma 1 and Lemma 3 we get because N(r,g) = N(r, f)
T(r,f) < Na(r,0;f)+2N(r,0;h)+ Ny(r,0:9)

+4N(r,h) + 2N(r,9) + S(r, [)

= 2Ny(r,0; [) + 2N(r, [) + S(r, /)

and so by the condition (iii) we see that

T(r, f) < {2+ o(1)} - T(r, f) a5 ¥ — oo (r ¢ E)
which implies a contradiction because A < 1/2. Therefore [, f2, f3 are linearly
dependent and so there exist constants ¢y, ¢z, ¢3, not all zero such that
(2) afi+efatesfs=0.
If ¢; = o, from (2) we get h(cz — c3g) = 0 and then g becomes a constant, which
is not the case. Thus, So ¢; # 0. Now eliminating f; from (1) and (2) we get

(3) cf') + df:'l = ]9

where ¢ =1 - -c%,d =1- Z—":.Clearly ¢,d can not be simultaneously zero.
We consider the following cases.
Case I. Let c.d # 0. Then from (3) we get 71; + dg = ¢, and by Lemma 1
and Lemma 2 we obtain
T(r,9) < N(r,h)+N(r,0;9)+ N(r,g)+ S(r;9)

(4)
=N(0; )+ N(r, )+ S(r,f) as r — oo (r ¢ E).
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Again by the second fundamental theorem we get
T(r,f) <N(r,0;/)+N(r,;; )+ N(r, [)+ 5(r; [)
=N(r,0;£)+ N(r,1;9)+ N(r, /) + 5(r f)
<N(,0: )+ N(r, )+ T(r,9) + S(r; /)
and this gives by (4) that
T(r,f) < 2ﬁ(r, 0; f) + 2N(r, f) + S(r; f).

In view of the condition (iii) we get T'(r, ) < {2A+0(1)}-T(r, [) as r — oo(r, ¢
E) which is a contradiction because A < 1/2. Ilence the case c.d # 0 cannot
arise.

Case II. Let c¢.d = 0.

Subcase (i). Let d = 0. Then from (3) weget cf—g=c—-1. 1l c# 1, we
obtain from Lemma 2 that

T(ra f) < W(T, 0; f) + W(r, 0;.(/) + N(ro f) + S(i‘, f)
< 2N(r,0; f) + 2N(r. [) + S(r, f).

This gives in view of the condition (iii) that 7(r, f) < {2A 4+ o(1)} - T(r, f) as
r — oo (r ¢ E), which is a contradiction because A < 1/2. Therefore ¢ =1 and
f=g.

Subcase (ii). Let ¢ = 0. Then from (3) we get df - !-’; =d-1.1d#1,
we obtain from Lemma 2

T(r,f) <N(r,g)+N(r,0; )+ N(r, /) + S(r, /)
< 2N(r;0; )+ 2N(r, ) + S(r, f).

So in view of the condition (iii) that 7(r, /) < {2A+0(1)}-T(r, f)asr — oo (r ¢
E), and this implies a contradiction because A < 1/2. Therefore d = 1 and so
f-9=1. |

Further, if f has at least a zero or a pole at =g, say, then zy is respectively
a zero or a pole of g and this is impossible if f-g = 1. So il f has at least a zero
or a pole, the case f-g = 1 cannot arise. This proves the theorem.
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