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New lower bounds for the cardinality of some spherical designs are given. The bounds
are obtained by a new method for obtaining good polynomials required in a linear programming
bound due to Delsarte, Goethals and Seidel. The polynomials we have found are B, r-extremal,
i.e. they are the best between the polynomials of the same or lower degrees.
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1. Introduction

A non-empty finite subset W of the ndimensional Euclidean sphere S"1
is called a spherical r-design on S~ ifl T_,.cy f(2) = 0 for all homogeneous
harmonic polynomials f(z) = f(z1,22,...,2,) of degree 1,2, ..., 7. These designs
were introduced in 1977 by Delsarte, Goethals and Seidel [1]. They obtained
the following lower bound for the cardinality of a 7-design:

(":ezl)+<"+"zz) i % L B
(1) Wia g b Sy e :
2( ) il r=2e+1.
n-—1

Bannai and Damerell [3, 4] proved that the bound (1) can not be attained
for 7 = 2e > 6 and for 7 = 2e + 1 > 9 except for 7 = 11, n = 24 and the unique
[5] design formed by the minimum norm vectors in the Leech lattice.

On the other hand, Seymour and Zaslavsky [2] have shown that spherical
r-designs on S™! exist for all values of n and 7.

In this paper we propose a method for obtaining new lower bounds im-
proving (1) in some cases. In fact, we find good polynomials for the linear
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programming bound by Delsarte, Goethals and Seidel [1]. We give some appli-
cations for r =4, n =3,4,5;7=6,4 < n <107 =7, n=5,6,7; 7 =8,
4<n<17;and 7 = 11,4 < n < 24. Our method is analogous to the method
proposed in [7] (see also [8,9]) for obtaining upper bounds for spherical codes.
The polynomials we have found are /3, ,-extremal (see Delinition 2 below or

)2
2. Linear programming bounds for spherical designs

The Gegenbauer polynomials are defined by
P =1, P10 =t,

(i +n—2)PYAt) = (2i + n — 2P (1) — i PO (1) for i > 1.
To obtain lower bounds on the size of the spherical designs we usc the following

theorem (Linear Programming Bound for spherical designs; Delsarte-CGoethals-
Seidel [1, Theorem 5.10]).

Theorem 1. Let f(t) be a real polynomial such that
(A1) f(t)20 for -1 <t<1,
and
(A2) The coefficients in the ezpansion of [(t) in terms of the Gegenbauer

polynomials f(t) = Yo fiP™ (1) satisfy frp1 <0,....fi 0.
Then the cardinality of a spherical T—design W C S™™' is bounded from
below by
| W 1> f(1)/ Jo.

Let us note that
1 N =
(2) Jo= cn/ J()(1 = )" T dt > 0,
-1

where
1 n—3
e = (/ (1= 7 an™ "' >o.
-1

The next lemma gives a useful expression of fy by the coellicients of f(t).
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Lemma 1. If f(t) = Sk pait’ = 35, f,-P,-(")(t) is a real polynomial,
then
[k/2) .
_ az 3(14 _ (2t - 1)!!(12,'
(3) fo_a°+n+n(n+2)+ —a°+§n(n+2)---(n+‘2i—2)

The proof is straightforward by using (2).

Definition 1. Let B,, = {f(t) : [(t) satislies the conditions of
Theorem 1, and L(f) = f(1)/ fo for f(1) € By, ;.

Definition 2. A polynomial f(t) € B, , of degree k is called B, .-
extremal, if
L(f) = max{L(g): g(t) € B, -, deg(g) < k}.

For example, if f(t) > 0 for —1 <t < 1, and deg(f) < 7, then f(t) €
B,.r. Such (extremal) polynomials of dogreo 7 were used in [1] for obtaining the
bound (1). Here we consider B, ,-extremal polynomials of higher degrees [7].

The next theorem concerns the number of the double zeros of extremal
polynomials.

Theorem 2. Let f(t) be a B, ;-extremal polynomial of degree k > T+3.

i) If T is odd or if T is even and —1 is an even zero of [(t), then f(t) has
at least (3] + 1 double zeros in [—1,1].

ii) If T is even and —1 is an odd zero of f(t), then f(1) has at least F
double zeros in [-1,1].

Proof. Let us suppose that f(1) = A*(¢t)G(t), where 2deg(A) < T,
G(t) 2 0for -1 <t <1,G(1) >0, A(t) has deg(A) zeros in [—1,1], and G(1)
has no double zeros in [—1,1]. We shall consider two cases.

Case 1. G(-1) > 0.

There exists € > 0 such that G(7) > ¢ > 0 for t € [-1,1]. Let us consider
the polynomial

P.(t) = f(t) —A%(1) = A2 (1)(G(t)-€) >0

for =1 <t < 1 (i.e. the condition (A1) is satisfied for P.(1)). Let f(t) =
oo f.P""(t) and Pe(t) = S50 fi( )P (1). Then we have fi(P) = f; for
i > 2deg(A) + 1. In particular, fi(P:) = f; <0fori > 7+ 12> 2deg(A) + 1.
Thus P(t) € By, ;.
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Since A%(t) € By, we have L(A?) < L(f). But one can casily check that
this inequality is equivalent to

Pe(1) _ () —eA%(D) _ f(1)

Jo(P:) — fo—efo(A?) Jo’
a contradiction. This proves the theorem in the case when —1 is even zero of
f(®).

Case 2. G(-1) = 0.

We have f(t) = A%(t)(t + 1)Gi(t), where Gy(t) > 0 for -1 <t <1
(otherwise G1(—1) = 0 and —1 would be a double zero of (i(1)). There exists
€ > 0 such that G1(t) > e >0fort € [-1,1].

If 7 is odd and B(t) = A%(t)(¢t+1), then we have deg(B) = 2deg(A)+1 <
7. Therefore B(t) € By . Going further one can obtain a contradiction as in
the first case.

If 7 is even and deg(A) < 7/2 — 1 we get a contradiction by a similar
argument. This completes the proof. @

We shall restrict ourselves to search for extremal polynomials of degree
7 + 3. These polynomials will have a form

f(t) = AY(t)g(t+1)+1-1] if 7=2e
O=1 2@at-p?+1-2] if r=2e41"

where deg(A) = e+ 1and 0 < ¢ < 1, =1 < p < 1. The polynomial A(t) has a
leading coefficient 1 and e + 1 zeros in [—1,1].

In the Gegenbauer expansion f(t) = ¢, f;P‘(")(t) we require fr41 =
fr42 = 0 [7, Theorem 3.4]). Using these conditions we can express two of the
coefficients of A(t) as functions of the remaining parameters ¢ and » (p, ¢, and
n).

Next we consider I = f(1)/ fo as a function of the unknown coeflicients ¢
and n (p, ¢, and n). Using equations obtained by equating the partial derivatives
of F to zero, one can express the remaining coeflicients ol A(1) as functions of
¢ and n. The formula from Lemma 1 is very useful here.

It does not seem possible to use further analytical methods. So we search
by a computer using a Monte Carlo method for ¢ € (0,1) (or for ¢ and p €
[-1,1)) in order to maximize the ratio f(1)/fy. The computer calculations
were made for a few seconds on a PC.

3. Some results for 4 <7< 8

Below we give the application of our method for 4 < 7 < 8 and corre-
sponding dimensions.
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Case 1. T = 4.

In this case we improve (1) in threc dimensions by one. It was known
that (1) can not be attained in these dimensions. Thus we have not obtained
actually new bounds. However, it is casicr to explain our approach in this small
case.

We consider polynomials of degree 7 having the following form

O = +at? +0t+c)lqt+1)+1-1] = Z JiPM(),
1=0

where f; = fe =0 and 0 < ¢ < 1 (the last implies f7 < 0). By f5 = f¢ = 0 one
can express

o= q+1
T 2l-gq)’
po et 2
T2 2n+410)

Using (3) we obtain
| I .
Jo = fole,q,m) = c*(q+ 1) + ~[2be(q = 1)+ (6% + 2ac)(1 + )]+
_3
n(n +2)
where a, # and v are functions of the parameters ¢ and n. We introduce the
function F(c,q,n) = f(1)/ fo(c,q,n) and obtain from the equality I/ = 0 the

following equation
(1) 2fo - foe(l+a+b+c)=0.

From (4) one can easily express

_2-p+a+td)
20(1 +a+b)— 3

(2ab + 2¢)(q — 1) + (a* 4 20)(1 + q)] = ac® + Be + 7,

= ¢(q,n).

Finally, n is fixed, and we have to search for ¢ € (0,1) maximizing
J(1)/ fo. The best polynomials we have obtained in dimensions 3, 4 and 5 give
bounds 10, 15, and 21 respectively while (1) gives 9, 14, and 21. The smallest
values for which 4—designs have been found by Ilardin and Sloanc [10] are 12,
20, and 29 respectively.
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Case 2. T = 6.

We consider polynomials of degree 9,

B \
f@) = (@ +at® + 02 + et +d)?[q(t + 1)+ 1= 8) = Y i),

=0

where fr=fs=0and 0 < ¢ < 1.
Similarly to the previous case we express a, b, ¢ and d as functions of

¢ and n. The new bounds we have obtained are given in Table 1. Delsarte,
Goethals and Seidel proved in [1, Theorem 7.7] that the bound (1) can not
be attained for 7 = 6 and n > 3 (see also [3, Theorem 1]). Thereflore, only
improvements by more than 1 of the bound (1) are really of interest. We obtain
such improvements in dimensions 4 < n < 10.

Table 1. New lower bounds for the cardinality of spherical 6-designs on S™1,

4<n<10.
n | [1,Th.7.7] | New bounds
4 31 32
5 51 54
6 78 84
7 113 121
8 157 167
9 211 221
10 276 283

Case3. 7 =1.
In this case we work with polynomials of degree 10,

10
f@) = +at® + o> + et + d)*[q(t - p)* +1-12] =) P,
=0
where fs = fo=0,0<¢g<1and —1 < p < 1. One can express the coefficients
a, b, ¢ and d as functions of p, ¢ and n. Maximizing, we obtain new bounds in
dimensions 5, 6 and 7.

Table 2. New lower bounds for the cardinality of spherical 7-designs on S*~1,
5<n<T.
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n | [4,Th.1] | New bounds
5 71 73

6 113 116

7 169 172

Cased. 7 =8.
We use polynomials of the form

' 11
f@) = +at* + b +et® +dt+eP[q(t+ 1)+ 1= 1] = Y fiP{"(2)
i=0

(fo = fio = 0 and 0 < ¢ < 1) to obtain new lower bounds improving (1) by
more than 1 in dimensions 4 < n < 17. The results are given in Table 3 below.

Table 3. New lower bounds for the cardinality of spherical 8-designs on S*~1,

4<n<I17.

n | [3,Th.1] | New bounds
4 56 59
5 106 115
6 183 203
7 295 332
8 451 . 511
9 661 750
10 936 1060
11 1288 1450
12| 1730 1930
13| 2276 2507
14 | 2941 3191
15 3741 3989
16 | 4630 4908
17 | 5815 5951

For 5—designs we have found B, s-extremal polynomials of degree 7 that
give again the bound (1). It is to be noted that in this case only we obtain
infinitely many non-proportional extremal polynomials (see [7]).
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4. New bounds for 11-designs
We use polynomials of degree 14,
14
fa)=(ﬂ+aﬁ+b#+a3+m2+d+jﬁmu+4)+1—qu+1)=E:ﬁﬂ”uy

i=0
where fij2 = fiz=0and 0 < ¢ < 1.
The new bounds in dimensions 4 < n < 23 are presented in Table 4. For
n = 24 we obtain the bound (1) again. It is attained by the 11-design formed
by the munimum norm vectors in the Leech lattice [1]. This design is unique up
to isometry [5]. Our result by a polynomial of degree 14 shows that the Leech
lattice has an index 14 [11].

Table 4. New lower bounds on the cardinality of the spherical 11-designs on
s*-1,4<n <23

n | [4,Th.1] | New bounds
4 112 117

5 252 270

6 504 HH2

7 924 1035
8 1584 1808
9 2574 2985
10 4004 4701
11 6006 7T
12 8736 10413
13 | 12376 14790
14 | 17136 201641
15| 23256 27664
16 | 31008 36623
17 | 40698 47574
18 | 52668 60744
19 | 67298 76314
20 | 85008 91566
21 | 106260 115577
22 | 131560 139514
23 | 161460 166483

It is to be noted that the regular polytope (3,3,5) in R' [12, 13] is an
11-design with 120 points [1]. So in this case our new bound scems reasonably

tight.
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