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Let Lo be the closure of the expression of the differential operator
1
2

I(y) = —y"(2) + —5L ¥(=) + ¢(=) y(z), 0<z<o0.

where » > 1 and ¢(z) is a real continuous function in [0,00). In this case, the defect index of
the opcrator Lo is (0,0) or (1,1). For the case of defect index (1,1), the space of boundary
values of the operator Lo and all of its maximal dissipative, maximal accretive and selfadjoint
extensions are obtained.
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1. Introduction
Let us consider the following differential operator
b2 L
(1) i) = =¢"(2) + —z L v(2) + ¢(2) y(z), 0<z < oo,

where » > 1 and ¢(2) is a real continuous function in [0, 00).

Let us denote by Lg the closure of the minimal symmetric operator ([1])
generated by (1). We denote by D the set of all the functions y(2) from L;(0, c0)
whose first derivatives are locally absolutely continuous in (0,00) and I(y) €
L3(0,00); D is the domain of the maximal operator L, and L = Lg, [1]). The
syminetric operator Lo has defect index (0,0) or (1,1), [1]. For defect index
(0,0) the operator Lo is selfadjoint, that is, Ly = Lg = L.

Previously, for v = -;-, the space of the houndary values of operator Lo,
maximal dissipative and selfadjoint extensions of the operator are studied in [2].
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In this work, we assume that the syminetric operator Lg has defect index

(1,1).
Let v,(z) and va(2) denote the solutions of (y) = 0 satisfying the inital

conditions
7n(0)=1, vj(0)=1, va(0) =1, vj(0)=1.
Clearly, v () and vy(2) are linearly independent and their Wronskians are equal
to one:
‘V[”I’vllw = "V[vlav‘lll =1, (1< 2z < o0)

We recall that a triple (M,I'y,I';), where H is a Hilbert space and I'y
and I'; are linear maps of D(A®) into H, is called the space of boundary values
(SBV) of clused symmetric operator A in the Ililbert space H with equal defect

indices, if the following two conditions hold:
1) For every f,g € D(A%)

(A* Lo 9)n = ([, A9 = (Ta f.Pa gy = (P2 [T g)m s

2) For every g1,92 € M there is a vector f € D(A™).
We cousider the following linear maps of D into €

(2) Nf=W[firilo , Taf=W[fivi)e , fED.

2. Results

Theorem 1. The triple (€;1'1,1'2) defined by (2) is the space of bound-
ary values of the operator Lg.

Proof. In order to check the first condition of (SBV), we first prove
the following lemma.

Lemma 1. For arbitrary functions y(x), z(z) € D we have

(3) Wly.%2], = Wiy, 0] . W[Z,v3): — W[y, v} . W([Em]: , 0L 2 < 0.

Proof. Observing that vy(z) and vy(x) are real functions, we have,

Wiy, vi)e . W[z, 3]0 — Wy, va) . W[Z, 0]

= (y(z) vi(z) — ¥'(2) 11(z) ) (F(x) vy(x) = F'(x) va())
—(y(z) v3(2) — ¥'(z) va(2) ) (T vi(2) — F(x) 0a(x) )
=y(z)Z(z) - ¥ (2)3(z) = W[y,3]., 0Lz < o0,
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Thus, Lemma 1 is proved. o
For » 2 1 and operator Ly having defect index (1,1), and for every

y(x), :(2) € D satisfying Wy,Z]p = 0, the lollowing Lagrange formula is
satisficd:

(4) (L”s 3)!.3(0.00) - (v, Lz)la(o.oo) = W[ll, 3]00
Using Lemma 1, from (4) the following relation is obtained

(I I22)g = (Tay, Ta2)g = Wy, v1)oo - W[Z, v2)c = Wy, va) - W[Z, v1]c
= W[y, F)oo-

Therefore, the first requirement of the $ BV is fulfilled. The second requirement
is proved by the use of the following lemma.

Lemma 2. For any complez numbers 39, h, there is a function y € D
salisfying ,

(5) w[’lv ”1]00 = ﬂo - W[ya v')]oo = ﬂl .

Prool. Let us denote by L, the closure of the minimal symmetric oper-
ator generated by I(y) in 1 £ z < co. For any complex numbers 49,71, fp and
P, there is a function yy(z) € D(L]) which satisfies the following conditions

(6) (D=7, YO)=m, Wyl =B, Wy, vJeo =5 .

Now, let us prove these relations. We consider a function f(z) € La(1,00)
satislying

(7) (fsv)Ly(1,00) =Bo+ 1 s (fiv2)r,0,00) = 51—

Let yy(«) denote the solution of equation /(y) = f(z) , (1£2<x) satlsl'ymg
the initial conditions
(M=%, y()=7.

This solution can be written as
y1(x) = vo vi(2) + 71 va(2) + /{vx(-'-‘) v(£) — 01(€) va(x)} S(E)dE .
1

This expression shows that yy(x) € D(L1"). Let us apply Lagrange's formula
to the functions yy(x) and vj(2) (j=1,2)
(8)

f, "'j)l‘-g(l.oc.):“(yl)’ "j)L:(l,oo) i ['V['!Ila ]\» et "V[qu v]]l + (v, I(' ))Iq(l o) ¢
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If we let
l(vj)=0 , m)=17 , vi(l)=mn
in (8), we find
1) forj =1
Win, ol = { 70 forj=2

and
(f’ ”I)Ia(l,oo) = W[Vh ”lloo +1n ,

(f.vz)tq(n.o;) =Wy, vs] -7 .
From (7) we obtain ]
W[”l"’l]oo =p , W[!Ih"zloo - ﬂl

Hence, we have proved that tilere exists a function y; € D(L,*) which satisfies
(6). For any complex numbers 7o and 7;, let :

nE)=rvn@)+mnn) , 0<z<1).
Then, let us define

_[wn() 0<z<1
¥z)= {:(:) 1< <o0.

It is clear that y € D. With respect to the condition (6) we obtain
Wy, m1)eo = W, Voo =fo , W[y, )0 = Wy, v2)00 = 1 .

Hence, Lemma 2 and Theorem 1 are proved. Using Theorem 1 and
Theorem 1.6 [3], we can state the following theorem.

. Theorem 2. For every number h € § Imh > 0 or h = o , the
restriction of L to the set of functions y € D salisfying either

(9) Wy, ”l]oo -hWly,1)e =0,
or
(10) W[ﬂ, ”l]oo +hWly, v =0,

is respectively the mazimal dissipative and accretive extension of the symmet-
ric operator Lg. Conversely, every mazimally dissipative (accretive) extention
of Lo is the compression (restriction) of L to the set of functions y(z) € D
salisfying (9),(10). If Imh = 0 or h = oo, the conditions (9) and (10) define
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selfadjoint extensions of the operator Lg. For h = oo, the conditions (9),(10)
Jorm Wy, v3)eo = 0. :
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