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A Property of Certain Analytic Functions
Involving Ruscheweyh Derivatives, II
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In this paper we oblain some inequalitics for certain analytic functions involving
Ruscheweyh derivative defined in the unit dise U = {2 : |z] < 1).
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1. Introduction

Let A(p) denote the class of functions of the form

(1.1) J(2)=2"4+ Y w* (pen={(1,2..}),
k=p+1

which are analytic in the unit disc U = {z : |z| < 1}. For functions [;(z)
(7 = 1,2) defined by

o0
(1.2) Ji(z) =2+ z u,,.,j.s"',
k=p+1
we define the convolution  fi * f5(z) of Tunctions fi(z) and fa(2) by
(1.3) Sirfo(z) =2+ 3 wegapast
k=p1

In terms of (1.3), we define
P

(1 =z)tr

(1.4) Drtr=lpz) = ( ) * [(z) (f(z) € A(p)),
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where n is any integer greater than —p. We note that

(@)D
(n+p-1)

The symbol D**?=1 when p = 1, was introduced by Ruscheweyh [6], and the
symbol D"+P-1 was introduced by Goel and Sohi [4). Therefore, the symbol
D"+7=1 f(z) is usually called the (n 4+ p — 1)-th order Ruscheweyh derivative of
J(z). It follows from (1.5) that ;

(1.5) D™l f(z) =

(16) (D™ [(2))" = (n+ P)D™PS(2)Y = (m+ 1D f(2)).

Recently, Chen and Lan ([1], [2]) and Chen and Owa [3] have proved some
interesting results of certain analytic functions involving Ruscheweyh deriva-

tives.
In [3] Chen and Owa have proved the following:

Theorem A. If a function f(z) € A(p) satisfies

n+
L.7) s{-ﬁ%,—f—{%;} >d  (rel)
Jor some a(0 £ a < 1), then
n )P ;
(1.8) R{B%} >y (z€0),
where
1
e N e
and
(1.10) :

T=Bm+p(i-a)+1

Corollary A. If f(z) € A(1) satisfies

O R
(1.11) &{ I } Sqoi . (aED),
then
1
(1.12) !t{f'(z)}" > W (z€U),

where 0 < B < (1 - a)/4.
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2. Main result

In order to prove our main result, we need the following lemma due to
Miller and Mocanu [5].

Lemma 1. Let ¢(u,v) be a complex-valued function,
p:D—C, DCCxC (Cis the complez plane),
and let u = uy + iug, v = vy + iva. Supposc thal the function ¢(u,v) satisfics
(i) ¢(u,v) is continuous in D; '

(i) (1,0) € D and R{p(1,0)} > 0;

i (14 uj) :
(iii) Jor all (iug,v1) € D such that vy < LN R{p(iug,v)} <0.
Let ¢(z) = 1 4+ q1z + q22% + ... be regular in the unit disc U such that
(9(2),2¢(2)) € D for all z € U, if :
®{e(a(2), 24 (z))} >0 (€ V),

then R{¢(z)} >0 (z€ V).
Applying the same technique as in proof of Theorem A (used by Chen

I ~
and Owa [3]) and using (1.6) or putting o p(~) in Theorem 1 instead of f(z),

we get the following
Theorem 1. If a function f(z) € A(p) salisfies

- (D™ f(2))
(2.1) R{(Duﬂ—lf(;)y

Jor some a(0 € a < 1), then

}>a (zeU)

(D™ f(2))
pzr-1

]
(2.2) R{ } > (z€U),

where B and v are given by (1.9) and (1.10), respectively.
Taking # = 1/2 in Theorem 1, we have

Corollary 1. If f(z) € A(p) salisfies the condition (2.1), then

(2.3) N { Eeadivt’ ("))’} > . (z€U),

pzr-l (n+p)1-a)+1
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where 1 — (n+p) <a<l.

. _ 1 - . on
lLetting 8 = Tt pNi—e) in Theorem 1, we have
Corollary 2. If f(z) € A(p) satisfics

1
. J DM Y 2 p) L -0) L
(2.4) £ {—-—pz_ﬂ"T— , > 3 (zel).
Putting p = n = 1 in Theorem 1, we have
Corollary 8. If f(z) € A(1) salisfies
1 . \\

2142 Ly ey,
(25) Yy et el
then

1
- - B .

' 3 < .
where 0 < 3 < i-a)

Remark. On our opinion, Corollary A of Theorem A is incorrect and
should read as follows:

Corollary B. If f(z) € A(1) salisfics

. "GN o, .

(2.7) R{l + -_—-f'(z) } >2x -1 (zeU),
then

.- pe L
where 0< 3 < T i o)

I'his can be obtained by putting # = p = | in Theorem A.
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