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1. Introduction

After the introduction of intuitionistic fuzzy sets by K. Atanassov [1,2,3],
as a gencralization of fuzzy sets developped by L. Zadeh [7], intuitionistic sets
and intuitionistic points were defined by D. Coker in [4]. Later, intuitionistic
fuzzy topological spaces were introduced in [5], and then intuitionistic topolog-
ical spaces were defined as a classical version of this concept [6].

2. Preliminaries

For the sake of completeness, we shall give some preliminary informa-
tion about intuitionistic sets, intuitionistic points and intuitionistic topological
spaces given in [4,6].

Definition 2.1. ([4]) Let X be a nonempty fixed set. An intuitionistic
set (IS for short) A is an object having the form

A=< X, A, 4A; >,

where A; and A; are subsets of X satisfying A; N A3 = @. The set A, is called
the set of members of A, while A3 is called the set of nonmembers of A.
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Obviously, every sct A on a nonempty set X is an IS having the form
< X, A, A° >. One can define several relations and operations hetween 1S’s as
follows: '

Definition 2.2. ([4]) Let X be a nonempty set and the 1S’s A and
B be in the form A =< X, A1, 42 >, B =< X, By, B; >, respectively and let
{A; 7 € J} be an arbitrary family of IS’s in X, where A; =< X, Ag”, 1\!2) >.
Then

(_i\) A C Bifr A] (o l)] and {12 2D ”-g;

L)A=BiTACDE and B C 4

(¢) A =< X, A2, 41 >;

(P =< X,0,X>and X =< X,X,0>;

(e) ud; =< X,uA), nA? >

(1) nA; =< X,nAM,uA? >,

Definition 2.3. ([4]) Let X be a nonempty set and p € X a fixed
clement in X. The 1S p =< X, {p}, {p}® > is called an intuitionistic point (1P,
for short) in X, and the IS p =< X, 0, {p}° > is called a vanishing intuitionistic
point (VIP, for short) in X.

Now we shall present some types of inclusion of an IP or a VIP to an IS:

Definition 2.4. ([4]) Let p€ X and A =< X,A1,A2 > be an IS in X.
(a) p is said to be contained in A (p € A for short) iff p € A,.
(b) pis said to be contained in A ( peA for short) iff p & A,.
Proposition 2.5. ([4]) Let {A; :i € J} be a fawmily of 1S's in X. Then
(al) pE Nics Ai IITL) € A; for cach i € J.
(a2) P € NigsAi iﬂg € A; Jor each i € J.
(bl)} € Uieq A; iff 3i € J such that P € A
(b2) P € VieAi iff 3i € J such that pE N
Proposition 2.6. ([4]) Let A and B be two IS’s in X. Then
(a) A C B iff for cach p we have p € A = p € B and Jor cach p we have
peA=peB. “

(b) A = B iff for each p we have peEApE B and for each p we have
peAspeB. , ¥
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Proposition 2.7. [4] Let A be any IS in X. Then

A={p:p GA})U(U{g P € A}).

Proposition 2.7 states that any IS in X can be written in the form A =
Au A, where A = U{p : p € A} and A U{B 'p € A}. Furhermore

lt is easv to show that, if A =< X, Al,Az p- 3 then A “=< X, Ay, A > and
A =< X,0,A; >.

Definition 2.8. ([6]) An intuitionistic topology (IT, for short) on a
nonempty set X is a family 7 of IS’s in X containing 0 X and closed under
arbitrary suprema and finite infima. In this case the pair (X 7) is called an
intuitionistic topological space (ITS for short) and any IS in 7 is known as an
intuitionistic open set (108, for short) in X. The complement A of an I0S A4 is
an I'TS (X, 7) is called an intuitionistic closed set (ICS, for short) in X

Obviously, any topological space (X, ) is an ITS in the form 7 = {A
A € 719} whenever we ldentlfy a subset A in X with its counterpart A =<

X, A, A >

Definition 2.9. ([6]) Let (X,7) be an ITS and A =< X, Ay, A3 > be
an IS in X. Then the interior and closure of A are defined by

int(A) =U{G : G is an I0S in X,G C A},
cd(A)=n{K : Kisan ICSin X,AC K}.

3. Neigborhood structures in intutionistic topological spaces

Definition 3.1.

(a) Let p be an IP in X. A subset N of X said to be a neighborhood of p in
X, if an I0S G € 7 exists such that p € G C N.

(b) Let P be an VIP in X. A subset N of X said to be a neighborhood of p
in X, if an I0S G € T exists such that pE GCN. >

We shall denote the set of all neighborhoods of pby N (L) ), and the set
of all neighborhoods of p by N (g ).
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The systems N(p) and N(p) of neighborhoods satisfy the following prop-
erties: o

Proposition 3.2. The neighborhood system N(p) in the ITS (X,7)
salisfies the following properties:

(N1) If N e N(B)’ thenp € N.
(N2) If Ne N(p) and N C M, then M € N(p).
(N3) If N1, Nz € N(p), then Nyn N3 € N(p).

(N4) If N € N(p), then there exists M € N(p) such that N € N(g) for each
gEM.

Proof. (N1), (N2) and (N4) are easy to prove.

(N3) Let Ny, Nz € N(B)' Then there exist the I0S’s Gy and G'3 such that
pEGiCN; (i = 1,2). For the 10S G := G1NG3, wehave alsop € G''C NiNNy,
andsoNlnNgeN(B). . "

Proposition 3.8.  The neighborhood system N(p) in the ITS (X,T)
satisfies the following properties: : '

(N1) If N € N(p), thenp € N.
(N2) IfN € N(B) and N C M, then M € N(p).
(N3) If N1,Na € N(p), then NyN Nz € N(p).

(N4) If N € N(B)’ then there exists M € N(l') such that N € N(gq) for each
gEM. i g i
Proof. Similar to the proof of the previous proposition. 5]
Now let us define the families

7 ={G:G € N(p) for cach p € G}

and
7 ={G:G € N(p) for each p € G}.

Clearly, G1 NGq € .4 for each G1,G; € 7. Moreover, let (G;)ies be a family of
1S’s in T and G := D,‘e]G.‘- Then, for a;ly pPE @, there exists an index ig € J



On Neighborhood Structures in ... 287

such that p € G;,. Hence G, € N(p) follows. Since Gj, C G, we get from (N2)
that G € N (p)ieGe€r. Thus we obtain the following proposition:

Proposition 3.4. 1 and T are IT’s on X.

Proposition 3.5. 7 C T and t C T

Proof. Let G € 7. We obviously have G € N(p) and G € N(B) for
each p € G and pE G, respectively. Ilence G' € T and G € 14 follow, dirthly. =

ixample 3.6. Let X = {a,b,c,d} and consider the family
7 ={0,X, A1, Az, A3, Ay}
of IS’s, where
Ay =< X,{a,b},{d} >, Az =<X,{c},{b,d} >,
Az =< X,0,{b,d} >, Ay =< X,{a,b,c},{d} > .

Then (X,7) is an ITS on X from which we get the I'T’s 7 and 7 as follows:

T=T u{A;:i=5,6,..,23},

As = <X, {c},{b} >,  As=<X,{c},{d}>, = Ar=< X,{a,b},0>,
As = < X,{a,b,c},0>, Ag =< X, {c},0 >, A =< X,0,{a} >,
An = < X,0,{b} >, Az =< X,0,{c} >, Az =< X,0,{d} >,
Ay = <X,0,{a,b}>, Az =< X,0,{a,c} >, A =< X,0,{a,d} >,
Ay = < .X,O, {b, c} >, A =< X, @. {C,d} >, A =< X, 0, {a,b,c} Py
Ap = <X,0, {(l,b,d} >, Ay =< X, 0, {a,c,d} >, A =< X, 0, {b,c,d} >y
Az = <X,0,0>

and
: =5+u {Ag:[,A‘)ﬁ}v

where Ay =< X, {a,¢c},{b,d} >, Azs =< X, {a},{b,d} >.

Here come the reverse implications of Proposition 3.2 and Proposition
3.3.
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Proposition 3.7. If to each element p of a set X there corresponds
a sel N(I.') of IS’s of X such that the properlies (NI),(N.?),(NJ) and (N4) in

Pmpos:tmn 3.3 are satisfied, then there exisls an intuilionistic topology on X
such that for each p € X, N (g) is the set of all neighborhoods of P in this

inluilionistic topology.
Proof. Let

T= {G’ :G € N(E) for cach P € G}.

It is easy to show that (X r) is an ITS on X. We will show that N(B) is
the set of all neighborhoods “of P for p € X. From (N2) it follows that “each
neighborhood of P belongs to N (g)

Conversely, let V be an IS belonging to N (1.')’ and let U be the union of
all the VIP’sg € X such that V € N(q) If we can show that P elU,UCVv
and U € o then the proof will be completc We have pE U,sinccVeN (1.')
and also U C V. Now 1fq € U, then by (N4), there exists an IS W € N(q) such
that for each r € W we » have V € N (r), which means that relU. It “follows
that W C U, a.nd therefore, by (N2), U€EN (q) for each g € U llence we get
Ueras required. n

Proposition 3.8. If to each element p of a set X there corresponds
a set 1(p) of IS’s of X such that the properties (N1), (N2), (N3) and (N4) in

Proposition 3.2 are satisfied, then there exisls an intuitionistic lopology on X
such that for p € X, N(p) is the set of all neighborhood of p in this intuilionistic

topology.
Proof. Similar to the proof of Proposition 3.7. n

Now we shall give the relations between these two ITS’s:
Proposition 3.9. 7=71nN I
Proof. By Proposition 3.5, we clearly have 7 C 7 N 7. Conversely, let

Gern I Then G € 7 and G € 1 follow. Hence Gisa nelghborhood of each of
its IP s B and its VIP 5P respectlvely Therefore there exist I0S’s G,, 4 G €T

such that p € G, C G and pE€ G',, C G. Consequently,

ll-ec)

G=uU pCU G, CGandG =U pCU cd,
p €G p €G =l:GC? ;ea

~ ~ ~
~ ~
~ ~ <
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and so
G=GUuUGC (geay,)U(geag) cG.
Since (E,Jw‘;:) U (;”Jeag) € 7, we get G € T, as required. L

~ Proposition 8.10. Let A be an IS in ITS (X, 7). Then
int(A) = int,.(A) Nind, (A).
ia:d =

Proof. Sincer C 1 and7CT by Proposition 3.5, we easily obtain
int(A) C int,(A), int(A) C intr(A) = int(A) C int, (A)Nind, (A).
~ ~ ~ ~

Now let pE int, (A) N int,(A). Then, by Proposition 2;5, we see, in particular,
ol ~
that p € int,(A) from which we obtain A € N(p), i.e. there exists G' € T such
that pPEGCAiepe int(A). Similarly, we have
p € intr(A)Nint,(A) = p € inl,(A)=> A€ N(g)
~ L ~ ~ ~

= there exists G € Tsuch that p e GC A = 4 € int(A).
Ilence, by Proposition 2.6, int,(A) N int,(A) C int(A) follows. O
Lod ~

In general, we have the inclusions:

int(A) C int,(A) and inl(A) C int,(A).
el &

But the reverse inclusions do not necd to be true:
Example 3.11. Consider the ITS (X, 7) in Example 3.6. I we take
A =< X,{a,c},{d} >, then it is casy to sec that
int(A) =< X, {c},{b,d} >

and
int; (4) =< X, {c},{d} >, intJ(A) =< X, {a,c},{d,d} > .

4. Interiors of intuitionistic sets

Given an ITS (X, 7), one can obtain the interiors of an arbitrary IS A
with respect to the IT’s (X, 7), (X, 7) and (X, 7). Furthermore, we can construct

another type of interior in terms of the follo“?ing concepts:
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Definition 4.1.

(a) Let Abean IS in X, E € A an IP and pe A an VIP. Then p is said to
be a T-interior point of A,if Ais a nenglnborhood of p, and P is said to be

a I—lntcnor point of A, if A is a neighborhood of P

(b) The unions of all r-interior and r-intcrior points of A are denoted by
T —ini(A) and I- mt(A), rcspectwely

Proposition 4.2.
(1) A€ i A = 7 — int(A).
(2) A €r ﬂg =;-—mt(A).

Proof. (1)Let A€ T andl) € A be given, ie. p € A. Hence A is
a ncighborhood of p. We have then P € T —inl(A), ie. A C T —int(A).
Conversely, since 7 —int(A) =U{p : A € N(I.’)} andif A € N(l.') then P EA,
ie.p€Ad,and we obtain p € 1 —ini(A). Thus T — ini(A) C A follows.

Now let A=71- mt(A) We shall show that A € 7. If p € A is an
arbitrary IP, then P € A, and hence A is a neighborhood of p € A. Hence, by
definition, A € T.

(2)Itis ‘similar to that of (1). ]

Lemma 4.8. Let (G;)icy be a family of IS’s in X and G = UieyG;.
Then we have

(1)G = U.e,]q.,,

(2) G UaEJG
P roof Smoe the proof of (2) is similar to (1), we shall provide only the

proof of (1).
(1) Let G; =< X,Gi1,Giz >, i € J. Then we have

G = UjeyG; =< UieyGi1,NigaGia >

Now choose any IP PE G. Then p € U;egGiy. Thus there cxists (; such that
P € Gi; meaning that p € G’ and sop € U.e,,(‘!

Conversely let pE U.eJG then there exists ¢ € J with pE G Hence
P € Gi1, and 80 p € U;esGiy. Consequently. U.e,G Cc G follows, as reqmred -
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Proposition 4. 4
(1) 7 —int(A) = agA cur G
(2) I- int(A) =y

G.
GCA, Ger ~

’

Proof. We shall prove only (1), the assertion (2) is similar to (1).

(1) Let p € U{G : G C A,G € 7}. Then there exists G € T such that
GCAandp €G. SmceGerandP € G, weha.veGeN(B)andso
A € N(p), which means that p € T — ini(A).

Conversely, let p € 7 — mt(A) Hence there exists G € 7 such that
pEGCA ButfromBGGrandG'er wegettheassertion (]

Notice that we always have the inclusions:
T —int(A) C int, (A) and I- int(A) C int, (A).
~ ~ . ™

The following counterexample shows that the reverse mcluslons do not hold in
. general:

Example 4.5. Consider the ITS (X, ), where X = {a,b,c,d, e} and

T = {0,X,<X,{a,b,c},{e} > < X,{c,d},{e} >, < X,{c},{d,e} >,
< X, {a,b,¢c,d},0>}.

Then it is easy to show that

I = TU{( X,{a,b,c},O >, < X, {c,d},O >, < X,{c}’{d} >’<"X9{c}’{e} >,
< X,{c},0>}U{< X,0,5>: 5 C X}

and

T - T U {< X, {a,b,c,d},{e} >, < X,{a,b,c}, {d} >,< X, {a,c,d},{e} >,

< X,{b,c,d},{e} >, < X,{a,b,c},{d, e} >, < X,{a,¢},{d,e} >,
< X, {b,c},{d,e} >}.

If we let B =< X, {b,c},{d} >, then int(B) =< X, {c},{d,e} > and
int, (B) =< X, {c},{d} >, int;(B) =< X, {b,¢},{d,c} >,

7 —in(B) =< X,{c}, {a,b,d,e} >, 4 T —int(B) =< X,0,{d, e} >,
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follow, i.e. we have the strict inclusions
int:(A) 2 1.— int(A), iut‘:(/i) # 1 —inl(A),
int,.(A) 2 I- int(A), int,(A) ;é T — inl(A).
Lastly, we present the properties of tlw interior operator T —int and
T = int.
5 Proposition 4.6. Let (X,7) be an ITS and A, B two 1S's in X. Then
(8) 7 - in(4) € 4
(al) r= ini(A) C 2
(b) AC B=> 1 —int(A) C 1 — inl(B)
(b1l) AC B = I- int(A) g;— - int(B)
(c) 7 —in(ANB) =1 — int(A) N1 —in(B)
(c1) T- int(AN B) " int(A) n;— —int(B)
(@) 7 - int(X) = X
(d1) B int(X)=X

Proof. We shall only give the proof of (c), the others can be verified

directly:
(c) First, let p be an T-interior point of AN B, i.e. ANB € N( p). Hence

A€eN (I.’) and BeEN (l’) follow, meaning that p is a T-interior point of both A
and B, i.e.

p €T —inl(A)and p € T — inl(B) => p € T — int(A) N T — inl(B).
On the other hand, if p € T —int(A)Nr —ini(B), then A € N(p)and B € N(p),
i.e. ANB € N(p) which means that p is an 7-interior point of AN B3. L
Notice that, in general, the equalities T — in(T — int(A)) = T —int(A),
S thr ~ int(A)) = Fide int(A) do not hold. For this purpose, consider the

ITS (X, r) in Example 4 5 and take A =< X, {b ¢}, {d} > . In this case one can
obtain the following:

T —inl(A) =< X,{c},{a,b,d,e} > and 7 —inl(1r — int(A)) =< X,0, X >=0.
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