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1. Introduction

A subset A of a topological space (X, 1) is called locally closed if A is
open in its closure or equivalently if A = UNV,, where U is open and V is closed.
Several classes of sets in general topological spaces have the above mentioned
property. For example, all connected subsets of the real line as well as all locally
compact subsets of Hausdorfl spaces are locally closed. Moreover, a Tychonoff
topological space X is locally closed in its Stone-Cech compactification X if
and only if X is locally compact. Spaces in which every subset is locally closed
are known as submaximal. Recently, locally closed sets were studied in [9, 12].

In 1986 and in 1989, Tong [18, 19] introduced two new classes of set,
namely A-sets and B-sets and using them obtained new decompositions of con-
tinuity. He defined a set A to be an A-sel [18] (resp. a B-set [19)) il A=UNV,
where U is open and V is regular closed (resp. semi-closed (= t-set)). Clearly
every A-set is locally closed and every locally closed set is a B-sets. Several
topological spaces can be characterized via the concepts of A- and B-sets [4].

The concepts of A-sets, locally closed sets and B-sets play important
role when continuous functions are decomposed. If the reader is interested in
different decompositions of continuity he (she) can refer to [1, 5, 8, 10, 11, 17,
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18, 19]. Several new decomposition of continuous and related mappings were
recently obtained in [G].

The aimn of this paper is to introduce a class of sets very closely related
to the classes of A- and B-sets, in fact properly placed between them. Under
consideration are the sets that can be represented as the intersection of an open
and a semi-regular set. A subset A of a (topological) space (X, 7) is called semi-
regular [15] if it is both semi-open and semi-closed. In [15]), Di Maio and Noiri
pointed out that a set A is semi-regular if and only if there exists a regular open
set I/ such that U C A C U. Cameron [2] called semi-regular set reqular semi-
open. In this paper, the connection of AB-sets to other classes of ‘generalized
open’ sets is investigated as well as several characterizations of topological spaces
via AB-scts are given. The concept of AB-continuity is also introduced. A new
decomposition of continuity and a decomposition of AB-continuity is produced
at the end of the paper.

Recall that a function f:(X,7) — (Y,a)is called A-continuous [17] if for
every open set V of (Y, ), the set f~1(V) belongs to A, where A is a collection of
subsets of X'. Most of the definitions of function used throughout this paper arc
consequences of the definition of x'i-conl.inuil.y. However, for unknown concepts
the reader may refer to [4, 10].

2. AB-sets

Definition 1. A subset A of a space (X,T) is called an AB-set if
A = UnNnV, where U is open and V is semi-reqular. The collection of all
AB-sets in X will be denoted by AB(X).

Since regular closed sets are semi-regular and since semi-regular sets are
senmi-closed, then the following implications are obvious:

A-set => AB-set =+ B-set

None of them of course is reversible as the following examples shows:

Example 2.1. Let X = {«,b,c,d} and let 7 = {0, {a}, {0}, {a.b},X}.
Set A = {b,c}. It is easily observed that A is an AB-set but not an A-set.

Example 2.2, Let X be the space from Example 3.1 from [18], i.c. let
X = {a,b,c} and let 7 = {0, {a}, X}. Set A = {c}. It is casily obscerved that A
is a B-sct but not an AB-set.

Clearly every open and every semi-regular set is an AB-set. But the
AB-subset of the real line R (with the usual topology) A = (R \ {0})n[-1,1]
is neither open nor semi-regular.
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Morecover, since the intersection of an open set and a semi- rogular sel is
always semi-open, then the following implication is clear:

AB-set = Semi-open set

However, if one considers the space from Example 2.2 above, it becomes
clear that not all semi-open sets are AB-sets: T'he set {a,b} is semi-open but
not an AB-set.

Next the relation between B-sets and AB-sets is shown but first consider
the following, probably known lemma. Recall that a set A C (X,7) is called
B-open (= semi-preopen) if A C IntA. The semi-closure of a set A C (X,7) is
the intersection of all semi-closed supersets of A.

Lemma 2.3. The semi-closure of every 3-open set is scmi-reqular.

Theorem 2.4. For a subset A of a space X the following are equivalent:

(1) A is an AB-sel.

(2) A is semi-open and a B-scl.

(3) A is B-open and a B-set.

Proof. (1) = (2) and (2) = (3) arc obvious.

(3) = (1) Since A is a B-set, then in the notion of Theorem 1 from [20],
there exists an open sets U such that A = U N sClA, where sClA denotes the
semi-closure of A in X. By Lemma 2.3, sCl.A is semi-regular, since by (3) A is
B-open. Thus A is an AB-set. 1t

Recall that a space X is called submaximal if every dense subset of X is
open. Let AO(X) denote the collection of all J-open subset of X.

Corollary 2.5. If(X,7) is a submazimal space, then AB(X ) = pO(X).

Proof. Since X is submaximal, then by Theorem 3.1 [rom [4] every
(3-open) subset of X is a B-set. Thus by Theorem 2.4, every 3-open subset of
X is an AB-set. On the other hand, every AB-set is -open. O

The class of locally closed sets is also properly placed between the classes
of A- and B-sets but the concepts of AB-scts and locally closed sets are inde-
pendent from each other: If first, every locally closed set is an AB-set, then
it would be semi-open as well. But locally closed, semi-open sets are A-sets
(10, Theorem 1]; however not all locally closed sets are A-sets. Second, if every
AB-set would be locally closed, then again it must be an A-set but as shown
above not all AB-sets are A-sets.

Theorem 2.8. For a subsct A of a space X the following arc equivalent:
(1) A is semi-regular.
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(2) A is semi-closed and an AB-set.

(3) A is f3-closed and an AB-set.

Proof. (1) = (2) and (2) = (3) are obvious.

(3) = (1) Since A is B-closed and a B-set, then A is semi-closed [4,
Theorem 2.3]. On the other hand A is semi-open, since it is an AB-sct. Thus
A is semi-regular, being both semi-open and semi-closed. [

Recall that a subset A of a space (X, ) is called interior-closed (= ic-set)
[11] if IntA is closed in A. i A C IntA, then A is called locally dense [3] (=
preopen). :

Theorem 2.7. For a subset A of a space X the following are equivalent:

(1) A is open.

(2) A is an AB-set and A is either locally dense or an ic-set.

Proof. (1) = (2) is obvious. _

(2) = (1) If A is locally dense, then since A is also a B-set, it follows
from Proposition 9 in [19] that A is open. If A is an ic-set, then in the notion
of Theorem 1 from [11], A is again open, since A is also semi-open. -

3. Some peculiar spaces

Recall that a space X is called extremally disconnected (= ED) if every
open subset of X has open closure or equivalently if every regular closed set is
open.

Theorem 3.1. For a space (X, 1) lhe following are equivalent:

(1) X is ED.

(2) = AB(X).

(3) Every AB-set is open.

Proof. (1) = (2) Let A € AB(X). Clearly A is semi-open. From
Theorem 4.1 in [13] it follows that A is preopen, since X is ED. Moreover A is
a B-set and since it is preopen, it follows from Proposition 9 in [19] that A € 7.
Hence AB(X) C 7. On the other hand it is obvious that 7 C AB(X).

(2) = (3) is obvious.

(3) = (1) Let A C X be regular closed. Thus A is an AB-set. By (3) A
is open. So, X is ED. : o]

Theorem 3.2. For a space X the Jollowing are equivaleni:
(1) X is submazimal.

(2) Every locally dense set is an AB-sel.

(3) Every dense set is an AB-sel.
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Proof. (1) = (2) Let A C X be locally dense (= preopen). By (1), A
is open, since in submaximal spaces every locally dense set is open [1-4]. Hence
A is an AB-set.

(2) = (3) every dense set is locally dense.

(3) = (1) Let A C X be dense. By (3), A is an AB-set. Ilence A is both
preopen and a B-set. From Proposition 9 in [19] it follows that A is open. Thus
X is submaximal. .

Recall that a space X is called a partilion space if every open subset of
X is closed.

Theorem 3.3. For a space X the following are equivalent:

(1) X is a partition space.

(2) Every AB-set is clopen.

(3) Every AB-set is (pre)closed.

Proof. (1) = (2) Let A C X be an AB-set. By (1) and Theorem 3.2
from [4], A is clopen, since it is a B-set.

(2) = (3) every clopen set is preclosed.

(3) = (1) Let A C X be open. Then A is an AB-set and by (3) it is
preclosed. Since every preclosed (semi-)open sct is (regular) closed, then X is a
partition space. =

Theorem 3.4. For a space X the following are equivalent:

(1) X is indiscrete.

(2) AB(X) = {0, X}.

Proof. The theorem follows from Theorem 3.3 from [4], since the class
of AB-sets is (properly) placed between the classes of A- and B-sets. ]

Theorem 3.5. For a space X the following are equivalent:

(1) X is discrete.

(2) Every subset of X is an AB-sel.

(3) Every singleton is an AB-set.

Proof. (1) = (2) and (2) = (3) are obvious.

(3) = (1) Let # € X. By (3), {2} is an AB-set and hence semi-open.
Then {2} must contain a non-void open subsct. Since the only possibility is {z}
itsell, then each singleton is open or equivalently X is discrete. @

Recall that a space X is called hyperconnected if every open snbset of X
is dense in X . :

Theorem 3.8. For a space X the following are equivalent:
(1) X is hyperconnected.
(2) Every AB-set is dense.
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Proof. (1) = (2) Let A C X be an AB-set. Then A is semi-open and
hence there exist an open subset U such that U7 € A C U. By (1), U is dense.
Hence its superset A is also dense.

(2) = (1) Every open subset of X is an AB-set and hence by (2) dense.
[

Recall that a space X is called semi-connccted [16] if X cannot be ex-
pressed as the disjoint union of two non-void semi-open sets.

Theorem 3.7. For a space X the following are cquivalent:

(1) X is semi-connected.

(2) X is not the union of two disjoint non-void AB-sels.

Proof. (1) = (2) If X is the union of two disjoint non-void AB-sets,
then X is not semi-connected, since AB-sets arc semi-open.

(2) = (1) If X is not semi-connected, then X has a non-trivial semi-open
subset A with semi-open complement. Since both A and B = X \ A are semi-
regular, then A and B are AB-sets. So X is the union of two disjoint non-void
AB-sets, coutradictory to (2). (]

4. AB-continuous functions

Definition 2. A function f:(X,7)— (Y, 0) is called AB-continuous ,
if the preimage of every open subset of Y is an AB-set in X,

Recall that a function f:(X,7) — (Y, a) is called strongly irresolute [7) if
J(sClA) C f(A) for every subset A of X. It is casily observed that a function
[:(X,7) = (Y, 0) is strongly irresolute if and only il the inverse image of every
subset of YV is semi-regular in X.

The last four theorems, below, are consequences of results from the be-
ginning of this paper, therefore their proofs arc omitted. Theorem 4.1 gives
the relations between AB-continuous functions and other forms of ‘generalized
continuity’. Note that none of the implications in Theorem 4.1 is reversible.
Theorem 4.2 gives a decomposition of AB-continuity, while Theorem 4.3 is an
improvement of Theorem 4 (i) from [10] and it follows from Theorem 2.4 in [4].
Theorem 4.4 gives a decomposition of continuity dual to AB-continuity.

Theorem 4.1. (i) Every A-continuous function is AB-conlinuous,
(ii) Every strongly irresolute function is AB-continuous,

(iii) Every AB-continuous funclion is B-continuous,

(iv) Every AB-continuous funclion is semi-conlinuous.

Theorem 4.2. For a function [:(X,7)— (Y,a), the following condi-
tions are equivalent:
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(1) f is AB-continuous.
(2) f is semi-continuous and B-continuous.
(3) f is B-continuous and B-continuous.

Theorem 4.3. For a function [:(X,7)— (Y,0), the following condi-
tions are equivalent:

(1) f is A-continuous.

(2) S is B-continuous and LC-conlinuous.

Theorem 4.4. For a function f:(X,7)— (Y,0), the following condi-
tions are equivalent: '

(1) f is continuous.

(2) f is AB-continuous and either precontinuous or ic-continuous.
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