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In this study, we dcfine a sequence of generalized lincar positive operators Ly, which
includes the operators M, constructed by W. Meyer-Konig and K. Zeller. Then we compute
the difference |Ln(f;z) — f(x)| with the help of asymptotic inequalities.
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1. Introduction

In this study, similarly to the generalization that we have made in [3]
for operators defined in [5], we generalize the Meyer-Konig and Zeller operators
defined in [12]. Then we prove some approximation properties of the operators
mentioned above.

2. Sequence of generalized Meyer-Konig and Zeller operators

Let A be a real number in the interval (0, 1). Assume that a sequence of
functions of {¢,} satisfies the following counditions:
1° Every function of sequence {¢,} is analytic on a domain 1) containing
the disk B={2€ C:|z| £ A};
20 pl(0) = ¢u(0) > 0;
0 L) d* 4
3% on’(0) = el (@)= 20, k=1,2,.
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49 o80) = yu(k +n) (1 + L) L7(0), k=1,2,.., wy Where, £, 4 and
7n are sequences of numbers satisfying the conditions

b =0 (;1‘-) 1k 20,7, =140 (%) and v, 21 (n,k=1,2,..).

Counsider the sequence of linear positive operators

(1) Ln(f;x)-%(z)z:f(k_k ) b,

where f € C'[0, A}.

R e m a r k. We shall show that the operator L,(f; ) contains, as a
particular case, the following operators.

1. Let ¢,(2) = (1 = 2)™"~L. Simple calculations show that in this case
Yu = 1, €4k = 0 and the operator L,(f;2) has the form

mrin == () (M)

Note that the operators M, have been defined by W. Meyer-Konig and K. Zeller
[12].
2. Let o, 3, 2 1,"l_i_.ng°a,.ﬁ,. =1, and

o, + B

)= = ey

a - .
Then, A < == and the condition to gives

n
2

Yo = anfay bug = Ty i

In this case, the operator L, (f;x) has the following form

v . — (an - ﬂnz)".'-2 k ,Bn n+ k ok
("'”’”"(n+l)a:+‘(a..+ﬂ..z)zf(/.+n)( ) "‘*2"“’( k )"

k=0

Now we can prove the following theorem.

Theorem 2.1. The sequence of linear posilive operators dcfined by (1)
with the conditions 1° — 4° converges uniformly to the function [ € C [0, A} in
[0, A].
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Proof. It is enough to prove the conditions of Korovkin theorem which
is ‘
La(t*;2) — 2%, k=0,1,2 .
uniformly in [0, A].
First, from

(2) Zv!.”(ﬂ) 1,

‘Pu(")

we have L,(1;z) = 1.
Secondly, since

S 3l z*
e Y B0
L,.(t,.'t) ‘Pn(z)k=1 k + n 9710 (0) k! ’

we get by 49,

-1

"( )kg](l +‘u.ls)¢“ l)(o)(L 1)! .

Ly(t;2) =

Since {1 = O (;‘;) y there exists a positive constant d sach that €, ; < 1,%
for any k. Therefore, by using (2) we have

La(t;2) < 270 (1 + ':':') .

Thus,
(3) Latiz) = % < (= Do + L2
On the other hand, we can also write
(4) La(tiz) - 2 = 2(7n — 1) + —— f:cnw«ps."’(O)?,i
‘Pn(z,),_go k!

and the conditions €y k41 > 0, 7, > 1 (sce 4°) give
(5) La(t;z)—2 2 0.
From (3) and (5) we can write

@i 0% La(tiz) ~ 2 < (70— 1) + 200,
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Hence
uli_l.tgoll,.(l;a:) =z
uniformnly in [0, A] and the second condition of Korovkin theorem is satisfied.
Finally, using 4° in L,(1%;z), after simplifications, we obtain
-2

(:=2)(q
§7n(l+enh)7n(l+euk 1)(,0 ( )(l» 2)'

1
La(t% ) = 22
(#:2) en(z)

1 (k=1) k-1
so,.(z)zl.+ T (14 ) Oy,

: k-2
< 22 2( _) (k=2)(gy_T > _
S T, 1+ n ‘p"(.t)zson (0)(k— 2)!

Y =ty gy T
i n ( )‘Pn(x)z (0)(,‘7"1)!.

Using (2), we have
Ln(t52) < 29 (14 :‘) +22 (14 o)

n

and so

2d2%2 + 2y, p 222 4 wq,d
n s .

(1) La(thz)-2*<2’(1i - 1)+
On the other hand, it is clear that

E (Coge2loptr + Lapsa + g1 ) @ )(0)"
'l( )‘_0

La(%;2)-2% = 2?(y2-1)+2%y} ——
1

k
Z (k)( il

Therefore,

2da42 + v, £ 2242d? + av,d
i :

9) o0< Ln(tz;z) -a? < 32(73 * l) + n?

and
lim L, (1% 2) = «?
N=—x

uniformly in [0, A].
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The proof is completed. a
Note that for Meyer-Konig and Zeller operators the inequality (9), was
proved by Miiller [13, p.61].

3. The order of approximation

In this section, we compute the approximation order of L, (f;2) to f(x)
with the help of asymptotic inequalities. For these computatlons we use Mame-
dov’s thcorem.

We use the following notations:

D?) : The space of all functions f such that f” exists on the interval 7.

B?) : The space of the functions such that f” is bounded on the interval

Theorem 3.2. Let L,(f;z) be a sequence of generalized lincar positive

operators defined by (1). Then for every [ € D[o AP and for sufficiently large n
the following asymptotic inequality holds

u ! dy,x — 2d o
(0 f32) — f(2)) s DN+ @t = 2 4 DI 4 (1)

Proof. Due to the proof of Theorem 2.1, we obtain

Ly(l;2) =1,

Ly(t;z) <z + —1n dm" +0 (i—) ,

2“71;3" + Tu +0 (l) ;

Lo(t%2) < 2% + =

Moreover, settlng [‘](z) = L,((t - z)*; z), we get

44 -y,.d

S B2, yro(L)

0 < i(e) € 2 (rn - 1)+

Since (v, -1)=0 (%) 3
llm arlil(z) =
n—infty
holds uniformly on [0, A].
This case corresponds to the equalities in Mamedov's theorem (see [13],
p. 49) below:
Yi(z) = dzy,



364 0. Dogru

Po(x) = 2(17;‘.:1.'2 + Yo
@alx) = n.

Because of Mamedov’s theorem, for f(a) € ,);:»)Al as n — oo, the follow-
ing asymptotic inequality is satislied

¢ W 1l (o€ I~ el Defm 4 — * v
lLulf32) — f(2)] < 21/(2)| |davya] + | S (-c.ilnln..l(ld‘),,x 2ad + 1)) +0 (_'!'_)

(11)

Using dzv, > 0 and 2dvy,x — 2zd + 1 > 0 in (11), we obtain (10).

Corollary of Theorem 3.2. l¢t [ € II[(:')’ ) then under the condilions
of Theorem 3.2 for sufficiently large n,

nl 4 14+ 2Ad n— ) |
[La(f32) — J(a)] s MAREAE 200 = DED g (1),

n

p A . — ax ’_',' Y 19 = aX ".“ .
where M = max {My, My}, My :2‘(«‘)‘.).711” (x)], and M, xgl[«::\]lf ()|

4. A generalization of r-th order of the sequence {L,} defined
by (1)

By C'") [0, A], we denote the set of the functions f having the continuous
r—th derivative f() (f(©)(z) = f(x)) on the segment [0, A], (0 < A < 1).

We consider a following generalization of the sequence of linear positive
operators defined by (1)

k i
) I . _ 1 o© r (‘) ’u.' (.’I,‘ - m) (I.- .),""
12) )= =35 (:.- +") T —eh 07 -

hk=0i=0

We call operators (12) the »—th order of the sequence (1). Note that this
definition for linear positive operators was given in [7].
We can prove the following proposition;

Theorem 4.1. et L!.'](' [ ) be a sequence of operators defined by (12).
If f*) € Lipp(@) (0 < a £ 1), then

aM B(a.'r)L (I-'«' ¥ l|'+";.’c) ‘

(13) r+a(r-1)0"

LE(fi) - f(2)| <

where B(a,r) is a beta function and L, is the sequence of linear positive oper-
ators defined in (1).



Approximation Order and Asymptotic Approximation ... 365

Proof. We can write

Z[(” 2 (553) (x—ﬁ—)i] OO

k=0 i=0

f() = L5 f2) = ,.(x)

(14)
Then from the Taylor’s formula we get

- £ (i) €8

!
i=0 L

G oo [ (P e e t)) - (k)

(15)

Since f(r) € Lipp(a), we can write

k k k i
00 |0 (44 (o= 135)) -0 ()l = Mo e - s
Also,
f a
(7) 0/(1 — 1y ~ledt = B(1+ ayr) = —S—B(a,r),
where B(a,r) is a beta function.
Using (16) and (17) in (15), we obtain
&l kN (E-w)| anM Bar) e
f(z)—gof”(k+n) ] Sr+a(r—1)!x_k—'-+—n-

Substituting of this inequality in (14), we have (13).

5. A differential equation

In this section, we consider differential equation like the one given in
Theorem 5.1 for the generalized Meyer-Konig and Zeller operators, that seems to
be fundamental for the investigation of many kinds of linear positive operators.

We refer to some papers, in which equations analogous to this in Theorem
5.1 are given: May [11], Volkov [14], Alkemade [1].
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Theorem 5.1. Let
(18) g(t)=—— (te0,4], A<1).

For each z € [0,A] and f € C[0,A], L.(f;z) as defined in (1), salisfies the
differential equation

(19) 3&%Ln(f;z) = "'7»(1 + n)(l + Cn,l )37111&(];3) + nlLa(fg;x).

Remark . Note that (19) is not a differential equation for L, ([;2)
but rather a functional differential equation.

Proof. Since f € C [0, A], the power series on the right-hand side of (1)
converges on [0, A]. Hence it is allowed to diflerentiate this series term by term

in [0, A]. Thus,

d =@(z) N
5 in(fim) = 2 Ef(k ) RO

k=0

o () on

90,.(3:)L=l
i & i . By 0 i .
Multiplying this equation by = and using g (I-_;k_;;) = & and 49, it follows that

k
k), x
=) 0%

ST C L

en( ) k=0

raoe (7)o (7)Ao

Using (1) in this equation, we prove the theorem. ]
Proposition 5.1. L,(t;2) is a solution of the differential equalion
(20/(2) + [n + 7a(1 + 0)(1 + ln 1)) y(2) = (1 +0)(1 + L)z (2 € [0, 4])

which satisfies the condition y(0) = 0.
Proof. Setting in (19) f = 1 — t it follows that

d ;
(21) z(—lzL“(l —t2) = =ya(l +0)(1 4 €uy)rLa(l = t;2) + nl, (4 2).
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Using the linearity of L, and L,(1;2) = 1 in (21), we obtain (20). (]

Thanks are due to Prof. Dr. A.D. Gadjiev for his useful recommenda-
tions.
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