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1. Introduction

Let M be an arbitrary set and m be a positive integer. In the direct
product M™ we define a relation = as follows

(1‘1," T ) R (yl""’ym) Aad
there exists a permutation 9 : {1,2,---,m} — {1,2,---,m} such that
Vi = 2y(:) (1<i<m).

This is a relation of equivalence and the class represented by (21, :-,2,,) will
be denoted by (21,:++,2;,)/ = and the set M™/ =~ will be denoted by M(™),
The set M (™) is called a permutation product of M.

If M is a topological space, then M (™) is also a topological space. The
space M (™) was introduced rather early [1] but it was studied mainly in [5]. If
M is an arbitrary manifold and m > 1, then in [1] it is proven that

r(M™) > q(M, Z).

Another important result [5] is that (R”)(™) is a manifold only for n = 2. Indeed,
it is proven that if n # 2 and m > 1, then the tangent space is not homeomorphic
to the Euclidean space R™™ and hence (R"){"™) is not a manifold. If » = 2, then
(R?)(™) = C(™) is homeomorphic to C™. Indeed, using that C is an algebraically
closed field, it is obvious that the mapping ¢ : C'™) — C™ defined by

‘P((zl,"”zm)/ z) - (al,aﬂs' "’am)
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is a bijection, where o;(1 < i < m) is the i-th symmetric function of Z1," " Zm.
The mapping ¢ is also a homeomorphism. Using this mapping, ma.ny examplee
of commutative vector-valued groups were constructed [3], and moreover this
theory about permutation products has an important role in the theory of the
topological commutative vector-valued groups [4].

2. One conjecture concerning the permutation product of com-
plex manifolds

In this section we give a conjecture concerning the permutation products
of complex 1-dimensional manifolds. It may find application in the research of
compact complex manifolds.

Let M be a real manifold. It is proven in [5] that the permutation product
M (™) is not a manifold if m > 1 and dim M > 2. It is a manifold with boundary
for dim M = 1. The “best” case is dim M = 2 and it is very convenient to
assume that M is a 1-dimensional complex manifold. In [2] it is proven that
M) also admits a complex structure. In the case of permutation products
each m-tuple (z1,:-+,%n) of M™ is identified by (2,(1),Zr(2)"**s%r(m)) for
each permutation 7 : {1,---,m} — {1,---,m}. Now let us consider a subgroup
G of the permutation group S, and define a relation = in M™ by

(%1,22,**, Zm) = (Tr(1)s Er(2)s* " *» Tr(m))

if and only if 7 € G. The factor-space M™/ ~ will be denoted by M™ /G. The
following problem arrises:

Problem. Find all the subgroups G < Sy, such that M™ /G is a complex
maunifold.

G = Sp, XSmy X+++X S, where Sy, -+, 5m, are permuta,tion groups
of partition of S into r subsets with my,---,m, elements (my+---+m, = m),
then G satisfies the required condition. But the subgroup G does not yield a new
complex( mz)mlfold because then M™ /G is homeomorphic to M(™1) x M(m2) x

co X M(™r),

In [5] the case where G is the cyclic group of m elements is studied. It is
proven there that M™ /G is not a manifold if m > 2. Some other subgroups of
Sy can be also verified not to satisfy the required condition. Indeed, assuming
that M™ /G is a manifold, it is verified that the tangent space at some points is
not homeomorphic to a Euclidean space. Now we give the following conjecture.

Conjecture. Let G < S,, and M be a 2-dimensional real manifold.
Then M™ /G is a manifold if  and only if G = Spmy X Smy X <<+ X Sy, where
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Smys***ySm, are permutation groups of partition of S into r subsets with ele-
ments my, .-, m,. ‘

This conjecture is equivalent to the following consequence.

Corollary. Let G < S,, and M be a I-dimensional complex manifold.
Then M™ /G is a complex manifold if and only if G = Spm; X Spy X +++ X Sy, ,
where Sy, ,+ -+, Sm, are permutation groups of partition of S into r subsets with
elements my,-- -, m,.

3. Verification of the conjecture for m = 4

First, note that the conjecture is trivially satisfie if m = 1,2. If m = 3,
then the subgroups of S3 are the cyclic group Z3 of three elements and the
groups of type S3 x Sy. Then M3/Z3 is not a manifold according to [5], and
M3/S; x §1 2 M® x M is a manifold. Hence the conjecture also holds for
m = 3.

The non-trivial case of the conjecture is m = 4. It is sufficient to consider
all non-trivial subgroups of 54 up to isomorphism induced by a permutation in
S4. Further on an “isomorphism” will mean such a special kind of isomorphism.
For the sake of convenience we denote the cycle a;, — a;; — -+ — a;, — a;, by

(ai, a5, -+ a;,).
1. The subgroups of S4 of order 2 up to isomorphism are:
G1 = {¢,(12)} and Ga = {¢,(12)(34)}.
Since Gy & S2 x 81 X 81, then
MGy 2 M*/S; x 81 X 51 2 M?/83 x M/Sy x M/S; & M® x M?

is a manifold.

The factor-space’ M*/G; is homeomorphic to (C?)(2) and hence it is not
a manifold.

2. The subgroup of S4 of order 3 up to isomorphism is unique:
Gs = {57 (123)’ (132)}'

Hence M*/G3 = M*/(Z3 x $1) & M3/Z3 x M/S; and it is not a manifold
because M3/Z3 is not a manifold according to [5].

3. The subgroups of 54 of order 4 up to isomorphism are:

Ga = {¢,(12),(34), (12)(34)}, G5 = {¢, (12)(34), (13)(24), (14)(23)}
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and  Gg = {¢,(1231),(13)(24),(1432)}.

Note that Gg & Z, and hence M* /Gy is not a manifold according to [5]. Further
Gy S3x 83 and hence M*/Gy = M?/Syx M?/S; % M@ x M) is a manifold.
Next we will prove that M*/G’ is not a manifold. Indeed, the tangent space at
the point (a,a,c,c) € M*/Gs(a # ¢) is given hy

C‘l/p= {(z,9,2,)/p:2,y,2,t € C and
(2,9, 2,)(p,,7,8) & (37 € Gs)r((a,a,¢,¢)) = (,8,¢,¢) and
T((z’ Yz, t)) - (pv q,7, 3)}
= {(z,y,2,t)/p: 2,y,%,1 € C and
(z' y’ :’ 1)p(p’ q’ r’ 8) Q (p’ q’ r, 8) - (z’ y' z”) or (l,’ q’ r’ 8) - (y’ z’ t’ z)} g (02)(2)
which is not homeomorphic to R® and thus M*/Gs is not a manifold.
4. The subgroup of S of order 6 up to isomorphism is unique:
Gr = {6(12),(13), (23), (123), (132)}.
Since G7 & S3 x 81, M1 /G & M3/83 x M/S, = M®) x M is a manifold.
5. The subgroup of S4 of order 8 up to isomorphism is unique:
Gs = {¢,(1234),(1432), (13)(24), (13), (24), (12)(34), (14)(23)}.
Then M*/Gg = (C®)2) = (C?)?) and hence it is not a manifold.
6. The subgroup of Sy of order 12 up to isomorphism is unique:

Gy = {¢,(123),(132), (124), (142), (134), (143), (234), (243),
(12)(34), (13)(24),(14)(23)},

i.e. the subgroup of even permutations. In this case M?/Gy is not a manifold
just as M'/Gy was not a manifold. Indeed, the tangent space at the point
(a,a,¢,c) € M*/Go(a # c) is homeomorphic to (C?)?) # R® and hence M*/Gly
is not a manifold.
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