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In the present rescarch it is found a full set of invariants (defining the latter up to an
isomorphism) of the algebra F'G in the terms of a group G and of a field F', when G belongs
to the some general classes of abelian groups. In particular, the results of Karpilovsky and
May are confirmed.
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0. Introduction

Let F be a field of characteristic p # 0 (charF = p) with an algebraic
cover F and let G be an abelian group with torsion part Go and p-component
Gp.

In the paper [3], a simplified necessary and sufficient condition for the
group algebra FH tobe F -isomorphic to the algebra F'G over an algebraically
closed field F' = F is given, in the cases when G belongs to the classes

(¥) G is a direct sum of cyclic groups.

(*#*) G have an algebraic compact p-primary component.

(*#%) G is a torsion simply presented group.

In this work we obtain a complete system of invariants for the I"-algebra
FG (as a condition F = F may be not valid) in the following three cases

(o) G is a direct sum of cyclic groups such that Go/G, is finite.

(00) G, is algebraic compact and Go/G) is finite.

(000) G is simply presented such that G/G) is finite.

In the proofs of the central results we shall use the next criterion of
Berman—Mollov, in a more convenient Mollov’s form (see [9]) for an isomorphism
of semisimple group algebras of finite abelian groups over an arbitrary field.



2 P. V. Danchev

Theorem (BERMAN-MoOLLOV). Let A be a finite abelian group and F
is a field whose characteristic not divide the cardinality |A| of A. Then FA =
FC as F-algebras for any group C if and only if |A| = |C| and |AY'| = |C?'|,
for all primes q # charF and i € sg(F).

In the above statement under spec,(F') = s,(F) we denote the spectrum

of a field F with respect to ¢ # p (see also [9]). If F = F, then s,(F) is an
empty number set, i.e. s4(F) = 2.
Besides we will use the following (see [7], p.487 or [1], p.12) proposition.

Proposition (BERMAN-MoLLOV, MAY). Let F be a field with a
characteristic which does not divide the orders of the torsion elements in an
abelian group A. Then the F-isomorphism FA = FC for any group C yields
FAp = FCo.

Now we can formulate the main results in the next two sections.

1. Mixed groups

Denote by G™ = {g™ | g € G}, where m € IN. We begin the results with
the following simple lemma.

Lemma. If C is a pure subgroup in the abelian group A, then for each
natural m

(A/C)™ = A™[C™

Proof. It is evident that (A/C)™ = A™C/C =2 A™/(C N A™) =
A™ [C™, as required. n

We can now state the first theorem.

Theorem (INVARIANTS). Let G be a direct sum of cyclic groups so
that Go/G, is finite. Then FH = FG as F-algebras for any group H if and
only if the following holds:

(1) H is abelian,

(2) Hy = Gy,

(3) H/HO = G/GO;

(4) |Ho/Hp| = |Go/G,l, .

- (5) |(Ho)/(Hp)*| = |(Go)? /(Gp)?'|, for all primes ¢ # p and i €
sq(F).

Proof. Necessity. We shall consider three subcases.
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_First. Obviously FG & FH is abelian, hence H is the same. That is why by
(6], G/Go = H/H,.

Second. From [6] it follows also too that, FG = FH implies F(G/Gp) =
F(H/H,) and by virtue of above Proposition, F[(G/Gp)o] = F[(H/H,)o]. But
(G/Gp)o = Go/Gp and by symmetry (H/Hp)o =:Ho/Hp. Thus F(Go/Gp) =
F(Hoy/H,). According to the above theorem for an isomorphism of finite groups,
we conclude |Go/Gyp| = |Ho/Hp| and |(Go/Gp)?| = |(Ho/Hp)?'| for all primes
q # p, i € 34(F), since p is not divided |Go/Gp| using the important Caushy
theorem (cf. [5],p.37, Theorem 1). Moreover G, is pure in Go, consequently
in view of the Lemma, (Go/Gyp)T = (Go)? /(Gy)T'. Analogously (Ho/H,)? &
(Ho)?' /(Hp)T, so the condition (5) is true.

o0
Third. Actually, G, C G is a direct sum of cyclics, therefore Gp = | My, My C

n=1
Mn+1 and Mn N G;ﬂ =1.

Suppose that N(FGQ) is a nilradical of FG and N(I(FG;G)) is anilrad-
ical of the fundamental ideal I(FG;G) of aring FG. Further, FG & FH does
imply 1+ N(FG) = 1+ N(FH). But N(FG) = N(I(FG;G)) = I(FG; Gp),
where I(FG;G)p) is a relative augmentation ideal in FG with respect to the
subgroup Gp. Similarly for N(FH). Thus finally 1+ I(FH; Hp) = 14
I(FG;G,), where the last group is a direct sum of cyclics (cf. [3]). Really
1+ I(FG;Gy) = U 1+ I(FG; My)], 1+ I(FG; My) C 14 I(FG; Mny1) and

n=1

[14 I(FG; M)]N[1+I(FG; Gp)PP" = [1+ I(FG; Mp)]N[1+ I(FP"GP"; Gy )] =
1+ I(FP"GP", Mnnng) = 1, and we need only apply the Kulikov criterion (see
[10], p.106, Theorem 17.1). As a final, H, C 1 + I(FH;H,) is one also. Be-
sides, FG & FH implies that G, and H, have equal Ulm-Kaplansky-Mackey
invariants (see [6]). That is why G, = H, ([11]).

Sufficiency. The quotient Go/G, is finite, hence bounded. Moreover Go is
pure in G, consequently Go/Gp is pure in G/G, by [10]. From one assertion
of Kulikov ([10], p.140, Theorem 27.5) Go/G, is a direct factor of G/Gp, say
G/Gp = Go/Gp x G/Go. Anallogicly H/H, = Ho/H, x H/Hp. So we conclude
F(G|G,) = F(Go/Gp) ®F F(G/Go) and F(H/H,)= F(Ho/H,)®F F(H/Ho).
From the conditions (4), (5) follows that F(Go/Gp) & F(Ho/Hp). Then to-
gether with the isomorphism (3), we have F(G/Go) = F(H/Ho),s0 F(G/Gp) =
F(H/H)).

But G is a direct sum of cyclics, thus G/Go & H/Hg are both free
and we observe that, G & Go X G/Go = Gp X G/Gp and H = Hp X H/Ho =
H, x H/H,. Further FG & [F(G/G,)|G, & [F(H/Hy)|H, = FH, as desired.
The proof is fulfilled. ]
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Corollary (IsoMORPHISM [2]). Let G be a direct sum of cyclic groups
Jor which Go is p-torsion. Then FH = FG as F-algebras if and only if
H=~G.

Now we can state the second important theorem.

Theorem INVARIANTS). Let G be a group such that G\, is algebraically
compacl and Go/G) is finite. Then FH = FG as F-algebras for any group
H if and only if (1)-(5) hold.

Proof. Necessity. Using the technics from the previous theorem, we
will prove only that Gp = H,,.

Indeed, G}, is algebraic compact if and only if G""b is divisible for
some natural k (see [10]) As we see that I(FG;G)p) = I(FH m,), hence
I(FH;HZ") = I(FG;GE") and I(FH; H} ") = I(FG; GEy = I(FG; G2h,

p“

because FG = FH. Thus I(FH;HE') = I(FH;HE™), ie. HE = HE
and furthermore Hj 7" is divisible. This is equivalent to the fact H), is alge-
braic compact. But 1f FG and FH are F-isomorphic, then G, and H, have
isomorphic divisible parts and equal functions of Ulm-Kaplansky—Mackey (see
[6]). So we establish, G, = H, (cf. [10,11]).
Sufficiency. Following step by step the idea in the previous theorem, we will
prove only that G} is a direct factor of G. Similarly for H,. These conjectures
are true, since G, and H, are both algebraically compact and pure subgroups
of G and H, respectively (see [10]). The statement is completely proved.

The indicated calculation of the invariants for a F-algebra F'G in the
terms of G and of F' extends the following result of Karpilovsky (1982).

Corollary (Karpilovsky [4]). Let G be a group such that Gy is algebraic
compact p-torsion. Then FH = I'G as I'-alg _/ebras for any group H if and
only if H=G@.

2. Torsion groups

Theorem (INVARIANTS). Let G' be a simply presented group for which
G/Gp 1is finite. Then a full system of invariants for the F-algebra F'G consists
the isomorphic class of G, the cardinality of G/G, and the cardinality of
G? /(G’,,)q for all primes q # p, i € sy(F).

Proof. Trivially, we observe that G is torsion.
Necessity. By the used scheme, we will prove only that Gy &

Indeed, apparently S(FG) = S([F(G/(’,,)]Gp) (see [2]), where G/G,
is p-divisible. We can may assume that F' is perfect. Therefore F(G/G))
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is perfect without nilpotent elements, that is why by [8], S(FG) is simply
presented if and only if G, is, too. But FG = FH does imply S(FG) =
S(FH), hence H, is simply presented. Moreover, F'G = FH ensures that G,
and H, have isomorphic maximal divisible subgroups and equal functions of
Ulm-Kaplansky-Mackey (cf. [6]). Thus, G, = H, (see [11]).

Sufficiency. The groups G and H are both torsion, so G = G X G[Gyp, HE=
H,x H/H, and the proof is easy, following the preceding method. The assertion
is verified. ]

Corollary. Let G be a finite group. Then a complete set of invariants
for the F-algebra FG consists the isomorphic class of Gy, the cardinality of
G/G, and the cardinality of G /(Gp)? for all primes q # p, i € s¢(F).

Corollary (May [8]). Let G be a simply presented p-primary group.
Then FH & FG as F-algebras if and only if H = G.

3. Concluding discussion

In the present research the fully invariants for a group algebra FG were
computed in the terms of a group G and of a field F with charF = p > 0,
when G belongs to the some major group classes. As we see, the complete set
of invariants in these cases is {Gp, G/Go, |Go/Gpl, |(Go)? /(Gp)*|s ¢ # p, i €
3q(F)} by the restriction |Go/Gp| < Ro. If |Go/Gp| 2 o, then probably the
elements of this set are not enough. i
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