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Using a special variation of control, introduced by Zabello, we obtain necessary con-
ditions for optimality of first order in a problem of minimization of a functional for a system
of neutral type.
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1. Statement of the problem

Let us consider the system of neutral type

(1) w(t) = f(x(t)1i(t - h)r u(t)a t)a te [tO, tl] = T9

(2) zo(.) = {®(7),7€ [to = h, o[, x(te) = Zo},

where z € R"*; h, h > 0, is a constant delay; « € R" is a piece-wise continuous,
piece-wise smooth r-vector function of control; ®(7) is a piece-wise continuous n-
vector function, T € [to — h,to[, ; To - a constant n-vector; the n-vector-function
f(z,y,u,t) is continuous with its derivatives 8f/dz, df/dy, 0f/Ou (y(t) =
#(t—h), teT). :

The following constraints on the control are giveh:

(3) gi(i"(t)a u(t)) = Ov i= ly_k’ g,'(’l'l,(t),‘u(t)) < 0’ i=k+ 1,m,

(4) u(t) €U C R", (t) eUC R',t €T,
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where scalar functions g;(v,u), i = 1,m, are piece-wise continuous (v(t) =

u(t), t € T),U and (} are compact sets.
On the trajectories of the system (1) - (4) the following cost functional

(5) J(u) = p(2(t1)) — min

is to be minimized, where ¢ is a continuous with dp/dz scalar function.

2. Necessary optimality condition

Let u°(t), t € T, be the optimal control in the problem (1) - (5) and
2°(), t € T, - the corresponding trajectory of (1) - (2).

We consider the following variation Au°(t) of the control u°() introduced
in [1], and called there an inner variation:

ory _ | 0,1€[0,0), [©,0] C (to, 1),
(6) Au’() ‘{ w(t +e0) — u(t), te€[0,0), '

where © ,© are not points of discontinuance of u°(%) or w(t), teT, O-0 <
h, |o] < 1, € > 0 and sufficiently small.

Every piece-wise continuous, piece-wise smooth r-vector-function u(t), t €
T, satisfying the constraints (3),(4) will be called an admissible control. If
€ > 0 is sufficiently small and o is arbitrary, |o| < 1, then the control @(t) =
u®(t) + Au(t), t € T, will obviously be admissible. Let Z(t), t € T, be the
corresponding trajectory of (1) - (2) and Aga°(t) = Z(t) — z°(1).

Lemma. For the deviation Aza°(t), corresponding to the variation (6),
the neat evaluation holds

(7) [|Azz°(t)|| < K(© — Q)e, K = const

(/ Il -] is in the space C(R",T) ).
Proof. Fort € [0, 0] we get

(8) Agd®(t) = (1) — &°(t) = f(Z(1), (1), 8(2), 1)

- 10, 57 (8), w(t),1) = 2LEQLO DD gy _ oy
+af(w°(t)a yaoit), uo(t)’ t)(%'(t) _ mO(t)) + 0f(.’l:°(t), yi;?(/t)’uo(t)’t) (y(t) _ yO(t))

+or([[aw®(@; 182 (@], |1 A=y° (I, (Azy®(t) = F(t) — y°(t))
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= %(t — h) — 2°(t — h) = Dga®(t — k)).

As

9) A®(t) = T(t) — u°() = ci®(t)o + 0a(¢)

and using the integral continuance of the solution Aga®(t), we obtain

Aml:o(t) = ¢, 0f(a:°(t), yao,i’b‘), "o(t)o t),aou)

S (2°(2), y° (1), u°(t):t) o

* ox Lwe’(t)

+ af(z°(t), y°(t), u°(2),
dy

(10)

8 Awy° (1) + 0s(e).

Integrate (10) on [©,1] :

Dgz®(t) =€ /et aaf(:v°(‘r), y;g:)' uo(r)’r)if(‘r)dr

wa®(T)dr

¢ 6f(a:°(1'), yo(T)’ uo(,'r)v T)
+ /g o A

2 /g‘ df(z°(r), y;(yf), u®(7), T)Agi'°(7' = h)dT + 04(¢).

From the continuance of functions 9 f/dx, 8f/dy, 0 f/du and properies of u(7)
it follows that there exist such constants K;, i = 1,2,3, that :

t t
lA®(@)]| < ¢ /9 lo|Cadr + K [_) | Age®(r)|ldr
t
+IC3/ ||Agz° (T = h)||dT
e
and as from (6) Agz°(7) = 0 when 7 < O, then
t
(11) lAae®(@)]] < K16(® — ©) + Ks /(_) llAge®(r)lldr,

Hence from (11) and Gronwall-Bellman’s inequality it follows:

(12)  Aw @l < K1s(8 — ©)¢F72) < K1e(@ — @)=~
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=Ke(@-9), t€[0,6,],

if K = K1e52(8-9),

With (12) the lemma is proved for ¢ € [0, 8]. For ¢, < t < © obviously
Ag2°(t) = 0, and for © < t < t; we will obtain (7) using (12) when ¢ = ©. The
lemma is proved. . [

Consider the conjugated system

dy(t) _ _f'(a(t),#(t — h),u(t),?)

dt ox ¥(t)
d [Of (2(t + h), (1), u(t + ), t + h) |
2| = «/)(t+h)],'
(13) to <t <ty —n
dp(t)  Of(a(t), it — h), u(t),t)
dt oz (),
h—h<t<iy
(14) p(t) = - 2280) gy =0, e 0+ 1,
¥ (r) = p¥(r) - LA DT By g )

(15)

/ . 7 . . . -
+ [3f (z(m + h),a:('r.a), u(ri+ h), i + h)1/)(1_i + h)] ’
)
where points of discontinuance 7; of ¥(t) are those of the control u(t), and also
points of the kind #; — jh, 7 — jh (¥E(1) = ¢(m: £0)).
Let °(t) be the trajectory of (13) - (15) corresponding to u°(t) and
2°(t), t € T. We will obtain a formula for the deviation of the criterion (5):

AJ(u) = J(@) - J(v°) = p(F(1)) — p(2°(t1))

(16)

3 / o
= 200D pge(ay) + 00| A 2.
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Using (8), the system (1),(13) - (15) and the obvious identity

/t b 9°' (1) Aga®(t)dt = ¥ (t1) Aga®(t1) — ¥° (L) Daa®(to)
= [ 0wt @a T ) - # A )

ty "
= % (t) Ama®(t1) - /t 9% (1) Age(t)dt
we express

—¢6(t1)Aqm°(t1) w3 /tl 1/)6(t) [af(xo(t), -'Lo(;x— h), uo(t)’ t)A;a:°(t)
K to

11

+3f($°(t), &°(t — h))uo(t)atAa_éo(t —h)+ df(x°(t),&°(t — h), "o(t)’tAuo(t)

Ay du
+01([|1Az°(D)|], [|AzE®(t = h)||, IIAu°(t)II)]dt

0f(z°(t + h), &°(t), u(t + h),t +h)
Oy >
131 o 20 o
+ wo:(t_l_h)af(a: (t+h),z (;),u (t+h),t+h)A
to Y
Lo 2 1pol(t)i)f(af(t),ai:°(t — h),u°(t),

t ou

—9°(t+h) °(t)

t
t

o

a:i:o('l)(lt

B Aus(t)dt

b ¢°'(t)3f(a:°(t), 5:0(;3/— h), w°(t), t)Aaio(t — h)dt

to

131 i
—/t ¥° ()01([|Azz @I, ||Az#(t = R, [|Au®(?)]|dt

t o 2Of e o
+ ¢6(T)af(x (T),.’l: (; h)' u (T)’T)Aq:i:°(1' s h)dT.
to+h )
As Az°(t)=0,t <t, and 9°(t) =0, t >y, then

' L3 GRS N 20(1). 2°(t — o
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h 4 .0 o
- [ o oAz I, Nz - i, Al
Then from (16) and (6) we get

6 O 1) 3004 _ 210
AJ(u®) = _-L ¢°'(t)af("“ (£), ((‘,)'u h),u (t)9t)Au9“)(u

151 ,
—/t (@0 ([[az® O, 1Az = b, [|Au®(@)]])dt

+0W([|agz°(t)]])-
If we use formula (9) and the integral continuity of solutions 2(¢), the deviation
is:

AJ() = - /ge ¢°,(t)0f(a;°(t), :i:°((;“— h), u°(t), t)it°(t)adt +o(e),

which with Hamilton’s function
H(z(t), &(t — h), ¥(1), u(t), t) = ¥'(¢) f(2(2), &(t — h),u(t),t)
can be written as in [1]:

(17)  AJ(a°) = —¢ /: 0H'($°(t),-'i'°(té-uh),1/»°('I.)u°(t)t)ﬂ°(t)mu + ole).

Theorem. If u°(t) and 2°(t), t € T, are the optimal control and
trajeclory in the problem (1) - (5) and 4°(t), t € T is the corresponding solution
of the conjugated system (13) - (15), then neat relations hold:

OH'(z°(t),2°(t — h), ¥°(1),u°(),1)

(18) a®(t) = Tu a(t) =0,
te T\
(19) ®(w+0)=a’(w=-0)=0,weQ,

where Q is the set of points of discontinuity of functions u°(t),u°(t), t € T.
Proof. If we recall the assumptions about ¢,0,0, o, then (18) follows

from (17), as AJ(u°) > 0. The equalities (19) can be proved, assuming the

opposite is true and using the continuity of a6 o (¢) and (18), as in [1]. =
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The identity (18) can be considered as a generalized Euler’s condition,
and equalities (19) - as an analogue of Weierstrass-Erdman’s condition.
The results of this paper were partly reported in [2].
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