Provided for non-commercial research and educational use. Not for reproduction, distribution or commercial use.

Mathematica Balkanica

Mathematical Society of South-Eastern Europe
A quarterly published by
the Bulgarian Academy of Sciences – National Committee for Mathematics

The attached copy is furnished for non-commercial research and education use only. Authors are permitted to post this version of the article to their personal websites or institutional repositories and to share with other researchers in the form of electronic reprints.

Other uses, including reproduction and distribution, or selling or licensing copies, or posting to third party websites are prohibited.

For further information on Mathematica Balkanica visit the website of the journal http://www.mathbalkanica.info

or contact:

Mathematica Balkanica - Editorial Office; Acad. G. Bonchev str., Bl. 25A, 1113 Sofia, Bulgaria Phone: +359-2-979-6311, Fax: +359-2-870-7273, E-mail: balmat@bas.bg

Mathematica Balkanica

New Series Vol. 13, 1999, Fasc. 1-2

On Pairwise S-Closed Subspaces

Alev Kanibir

Presented by P. Kenderov

1. Introduction

The concept of bitopological spaces was first introduced by Kelly [3]. Levine [4] defined the notions of semiopen sets in topological spaces. Bose [1] extended the notions of semiopen sets to the bitopological settings. Thomson [7] initiated the notion of S-closed topological spaces. Mukherjee [5] generalized the notions of S-closed spaces to the bitopological settings.

In this paper we investigate the properties of pairwise S-closed subspaces. Throughout this paper we shall denote by (X, τ_1, τ_2) a bitopological space. For any subset A, τ_i – int A and τ_i – cl A denotes the interior of A and the closure of A with respect to τ_i , where i=1,2. If $A\subset Y\subset X$, τ_{i_Y} – cl A will denote the τ_{i_Y} -closure of the subset A in the subspace $(Y, \tau_{1_Y}, \tau_{2_Y})$ of (X, τ_1, τ_2) , where i=1,2. A subset A of (X, τ_1, τ_2) is called τ_i semiopen with respect to τ_j if there exists a τ_i -open set U of X such that $U\subset A\subset \tau_j$ – clU, where $i,j=1,2, i\neq j$.

Definition 1.1. A subset Y of a space (X, τ_1, τ_2) is said to be pairwise dense [6], if every nonempty subset of X which is the intersection of a τ_1 -open and a τ_2 -open subset of X has nonempty intersection with Y.

Definition 1.2. (X, τ_1, τ_2) is called $\tau_i S$ -closed with respect to τ_j [5], if for each cover $\{V_\alpha \mid \alpha \in \nabla\}$ of X by τ_i semiopen sets with respect to τ_j , there exists a finite subfamily ∇_0 of ∇ such that $X = \bigcup \{\tau_j - \operatorname{cl} V_\alpha \mid \alpha \in \nabla_0\}$, $i, j, = 1, 2, i \neq j$. X is called pairwise S-closed if it is $\tau_i S$ -closed with respect to τ_j for $i, j, = 1, 2, i \neq j$.

Definition 1.3. A subset Y of (X, τ_1, τ_2) will be called $\tau_i S$ -closed with respect to τ_j in X [5], if and only if for every cover $\{V_\alpha : \alpha \in \nabla\}$ of Y by

A. Kanibir

 τ_i semiopen sets with respect to τ_j of X, there exists a finite subfamily ∇_0 of ∇ such that $Y \subset \bigcup \{\tau_j - \operatorname{cl} V_\alpha \mid \alpha \in \nabla_0\}$, where $i, j, = 1, 2, i \neq j$.

Theorem 1.4. [5] A subset Y of (X, τ_1, τ_2) will be τ_{i_Y} S-closed with respect to τ_{j_Y} , if Y is τ_i S-closed with respect to τ_j in X and $Y \in \tau_i$, where $i, j = 1, 2, i \neq j$.

Theorem 1.5. [5] If a subset Y of (X, τ_1, τ_2) is τ_{i_Y} S-closed with respect to τ_{j_Y} and $Y \in \tau_1 \cap \tau_2$, then Y is τ_i S-closed with respect to τ_j in X, for $i, j = 1, 2, i \neq j$.

2. Pairwise S-closed subspaces

Lemma 2.1. [2] Let (X, τ_1, τ_2) be a bitopological space, $Y \subset X$ pairwise dense set. If U is nonempty τ_i -open set (i = 1, 2), then $U \cap Y \neq \emptyset$.

Lemma 2.2. [2] Let (X, τ_1, τ_2) be a bitopological space. Let U and Y be the subsets of X. If U is a τ_i -semiopen set with respect to τ_j and Y is pairwise dense set, then

$$\tau_i - clU \subset \tau_i - cl(U \cap Y), \qquad i, j = 1, 2, i \neq j.$$

Lemma 2.3. Let (X, τ_1, τ_2) be a bitopological space and V, Y subsets of X. If V is τ_i semiopen with respect to τ_j and Y is pairwise dense set in X, then $V \cap Y$ is τ_{i_Y} semiopen with respect to τ_{j_Y} , $i, j = 1, 2, i \neq j$.

Proof. If V is an empty set, then it is clear. If V is a nonempty set then there exists a nonempty τ_i -open set U such that $U \subset V \subset \tau_j - \operatorname{cl} U$. Hence $U \cap Y \subset V \cap Y \subset \tau_j - \operatorname{cl} U \cap Y$. By Lemma 2.1 $U \cap Y \neq \emptyset$. Clearly, $U \cap Y$ is τ_{i_V} -open set and if we use Lemma 2.2 we get

$$U \cap Y \subset V \cap Y \subset \tau_j - \operatorname{cl} U \cap Y \subset \tau_j - \operatorname{cl} (U \cap Y) \cap Y \subset \tau_{j_Y} - \operatorname{cl} (U \cap Y).$$

This completes the proof.

Lemma 2.4. Let (X, τ_1, τ_2) be a bitopological space and $A \subset Y \subset X$. If A is τ_{i_Y} semiopen with respect to τ_{j_Y} , then there exists a τ_i semiopen set V with respect to τ_j in X such that $A = V \cap Y$, where $i, j = 1, 2, i \neq j$.

Proof. Since A is τ_{i_Y} semiopen with respect to τ_{j_Y} we have $U \subset A \subset \tau_{j_Y} - \operatorname{cl} U$ for a τ_{j_Y} -open set U. Let $U = O \cap Y$ for τ_i -open set O. Therefore, we obtain

$$O \subset A \cup O \subset (\tau_{j_Y} - \operatorname{cl} U) \cup O \subset (\tau_j - \operatorname{cl} U) \cup O \subset \tau_j - \operatorname{cl} O.$$

Put $V = A \cup O$.

$$(A \cup O) \cap Y = (A \cap Y) \cup (O \cap Y) = A \cup U = A$$

This completes the proof.

Lemma 2.5. Let (X, τ_1, τ_2) be a bitopological space and $A \subset Y \subset X$. Then, we have

- (a) If A is pairwise dense set in X then A is pairwise dense set in Y.
- (b) If A is pairwise dense set in X then Y is pairwise dense set in X.

Proof. (a) Let $V' \in \tau_{1_Y}$, $W' \in \tau_{2_Y}$ and $V' \cap W' \neq \emptyset$. There exists τ_{1^-} open V such that $V' = V \cap Y$ and there exists τ_{2^-} open W such that $W' = W \cap Y$. Since $W' \cap V' \neq \emptyset$, then $W \cap V \neq \emptyset$. Since A is pairwise dense set in X, then $V \cap W \cap A \neq \emptyset$. Since $A \subset Y$, then $W' \cap V' \cap A \neq \emptyset$. This shows that A is pairwise dense in Y.

(b) Let $V \in \tau_1$, $W \in \tau_2$ and $V \cap W \neq \emptyset$. Since A is pairwise dense set in X, then $W \cap V \cap A \neq \emptyset$ and since $A \subset Y$, then $W \cap V \cap Y \neq \emptyset$. This shows that Y is pairwise dense set in X.

Remark 2.6. In a bitopological space (X, τ_1, τ_2) , for any subset Y which is $\tau_i S$ -closed with respect to τ_j is not necessarily $\tau_{i_Y} S$ -closed with respect to τ_{j_Y} in $Y, i, j = 1, 2, i \neq j$.

Example 2.7. Let R be the set of real numbers, τ_1 the usual topology of R, τ_2 the topology of countable complements of R and N the set of positive integers. Then N is τ_1 S-closed with respect to τ_2 . Infact N is τ_2 S-closed with respect to τ_1 in R but N is not τ_{l_N} S-closed with respect to τ_{2_N} .

Theorem 2.8. Let Y be a pairwise dense set in the bitopological space (X, τ_1, τ_2) , Then Y is τ_{i_Y} S-closed with respect to τ_{j_Y} iff Y is τ_i S-closed with respect to τ_j in X, where $i, j = 1, 2, i \neq j$.

Proof. Let Y be τ_{i_Y} S-closed with respect to τ_{j_Y} and $\{V_{\alpha} \mid \alpha \in \nabla\}$ a cover of Y, where each V_{α} is τ_i semiopen with respect to τ_j . Then by Lemma 2.3, $V_{\alpha} \cap Y$ is τ_{i_Y} semiopen with respect to τ_{j_Y} for each α . By hypotesis we

18 A. Kanibir

have $Y \subset \bigcup \{\tau_{j_Y} - \operatorname{cl}(V_\alpha \cap Y) \mid \alpha \in \nabla_0\}$ where ∇_0 is a finite subfamily of ∇ . Therefore we have $Y \subset \bigcup \{\tau_j - \operatorname{cl}V_\alpha \mid \alpha \in \nabla_0\}$. This shows that Y is τ_i S-closed with respect to τ_j in X.

Let Y be τ_i S-closed with respect to τ_j in X and $\{V_\alpha \mid \alpha \in \nabla\}$ a cover of Y, where each V_α is τ_{i_Y} semiopen with respect to τ_{j_Y} . By Lemma 2.4, for each V_α , there exists a τ_i semiopen set U_α with respect to τ_j such that $V_\alpha = U_\alpha \cap Y$. Then $Y \subset \bigcup \{U_\alpha \mid \alpha \in \nabla\}$. Since Y is τ_i S-closed with respect to τ_j in X then $Y \subset \bigcup \{\tau_j - \operatorname{cl}U_\alpha \mid \alpha \in \nabla_0\}$, where ∇_0 is a finite subfamily of ∇ . By Lemma 2.2 $\tau_j - \operatorname{cl}U_\alpha \subset \tau_j - \operatorname{cl}(U_\alpha \cap Y)$ and hence $\tau_j - \operatorname{cl}U_\alpha \cap Y \subset \tau_{j_Y} - \operatorname{cl}(U_\alpha \cap Y)$. Therefore, we have $Y = \bigcup \{\tau_{j_Y} - \operatorname{cl}V_\alpha \mid \alpha \in \nabla_0\}$. Then Y is τ_{i_Y} S-closed with respect to τ_{j_Y} .

Remark 2.9. Let Y be a subset of the bitopological space (X, τ_1, τ_2) . Any subset of Y which is $\tau_i S$ -closed with respect to τ_j in X is not necessarily a $\tau_{i_Y} S$ -closed with respect to τ_{j_Y} , where $i, j = 1, 2, i \neq j$.

Example 2.10. Let R be the set of real numbers, τ_1 the usual topology of R, τ_2 the topology of countable complements of R, N the set of positive integers and Z the set of integers. Then N is $\tau_1 S$ -closed with respect to τ_2 and $\tau_2 S$ -closed with respect to τ_1 in X but N is not $\tau_{1Z} S$ -closed with respect to τ_{2Z} .

Theorem 2.11. Let Y be a pairwise dense subset of the bitopological space (X, τ_1, τ_2) and $A \subset Y$. Then A is $\tau_{i_Y} S$ -closed with respect to τ_{j_Y} iff A is $\tau_i S$ -closed with respect to τ_j in X, where $i, j = 1, 2, i \neq j$.

Proof. Let A be τ_{i_Y} S-closed with respect to τ_{j_Y} and $\{V_\alpha \mid \alpha \in \nabla\}$ a cover of A, where each V_α is τ_i semiopen with respect to τ_j . By Lemma 2.3 $V_\alpha \cap Y$ is τ_{i_Y} semiopen with respect to τ_{j_Y} for each α . Since A is τ_{i_Y} S-closed with respect to τ_{j_Y} then $A \subset \bigcup \{\tau_{j_Y} - \operatorname{cl}(V_\alpha \cap Y) \mid \alpha \in \nabla_0\}$. Therefore, $A \subset \bigcup \{\tau_j - \operatorname{cl}V_\alpha \mid \alpha \in \nabla_0\}$. Hence A is $\tau_i S$ -closed with respect to τ_j .

Let A be $\tau_i S$ -closed with respect to τ_j in X and $\{V_\alpha \mid \alpha \in \nabla\}$ a cover of A, where each V_α is τ_{i_Y} semiopen with respect to τ_{j_Y} . By Lemma 2.4, for each V_α , there exists a τ_i semiopen set U_α with respect to τ_j such that $V_\alpha = U_\alpha \cap Y$. Since $A \subset \bigcup \{U_\alpha \mid \alpha \in \nabla\}$ and A is $\tau_i S$ -closed with respect to τ_j , then $A \subset \bigcup \{\tau_j - \operatorname{cl} U_\alpha \mid \alpha \in \nabla_0\}$, where ∇_0 is a finite subfamily of ∇ . By Lemma 2.2. $\tau_j - \operatorname{cl} U_\alpha \subset \tau_j - \operatorname{cl} (U_\alpha \cap Y)$ and hence $\tau_j - \operatorname{cl} U_\alpha \cap Y \subset \tau_{j_Y} - \operatorname{cl} (U_\alpha \cap Y)$. Therefore, $A \subset \bigcup \{\tau_{j_Y} - \operatorname{cl} V_\alpha \mid \alpha \in \nabla_0\}$. Hence A is $\tau_{i_Y} S$ -closed with repect to τ_{j_Y} .

Corollary 2.12. Let A be pairwise dense subset of a bitopological space (X, τ_1, τ_2) such that $A \subset Y \subset X$. Then A is a pairwise S-closed subspace of Y iff A is a pairwise S-closed subspace of X.

Proof. This follows from Lemma 2.5, Theorems 2.8 and 2.11.

Theorem 2.13. Let Y be a pairwise open set in the bitopological space (X, τ_1, τ_2) and $A \subset Y$. Then A is τ_{i_Y} S-closed with respect to τ_{j_Y} iff A is τ_i S-closed with respect to τ_j in X, where $i, j = 1, 2, i \neq j$.

Proof. Similar to the proof of Theorem 2.11.

Corollary 2.14. Let A and Y be pairwise open subsets of a bitopological space (X, τ_1, τ_2) such that $A \subset Y \subset X$. Then A is a pairwise S-closed subspace of Y iff A is a pairwise S-closed subspace of X.

Proof. This follows from Theorems 1.4, 1.5 and 2.13.

References

- [1] S. B o s e. Semi open sets, semi continuity and semi open mappings in bitopological spaces. Bull. Cal. Math. Soc., 73, 1981, 237-246.
- [2] A. K a n i b i r. A note on a pairwise α-continuous functions. Bull. Cal. Math. Soc., 88, 1996, 49-52.
- [3] J.C. K elly. Bitopological spaces. Proc. London Math. Soc., 13, 1963, 71-89.
- [4] N. L e v i n e. Semi open sets and semi continuity in topological spaces. Amer. Math. Monthly, 70, 1963, 36-41.
- [5] M. N. M u k h e r j e e. On pairwise S-closed bitopological spaces. Int. J. Math. & Math. Sci., 8(4), 1985, 729-745.
- [6] A.R. S i n g a l, S.P. A r y a. On pairwise almost regular spaces. Glasnik Matematicki, 6(26), 1971, 335-343.
- [7] T. Thompson. S-closed spaces. Proc. Amer. Math. Soc., 60, 1976, 335-338.

Zonguldak Karaelmas University Faculty of Art and Science Department of Mathematics 67100 Zonguldak, TURKEY Received: 22.12.1995