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1. Introduction

The concept of bitopological spaces was first introduced by Kelly [3].
Levine [4] defined the notions of semiopen sets in topological spaces. Bose [1]
extended the notions of semiopen sets to the bitopological settings. Thomson
[7] initiated the notion of S—closed topological spaces. Mukherjee [5] generalized
the notions of S—closed spaces to the bitopological settings.

In this paper we investigate the properties of pairwise S—closed subspaces.

Throughout this paper we shall denote by (X,71,72) a bitopological
space. For any subset A, 7; — intA and 7; — clA denotes the interior of A and
the closure of A with respect to 7;, where i = 1,2. A CY C X, 7, — clA will
denote the 7;,—closure of the subset A in the subspace (Y, 71y, 72, ) of (X, 71, 72),
where i = 1,2. A subset A of (X, 71, 72) is called 7; semiopen with respect to
7; if there exists a m;—open set U of X such that U C A C 7; — clU, where
,7=1,2,i#j.

Definition 1.1. A subset Y of a space (X, 7, 72) is said to be pairwise
dense [6], if every nonempty subset of X which is the intersection of a my—open
and a T—open subset of X has nonempty intersection with Y.

Definition 1.2. (X, 7,72) is called 7; S—closed with respect to 7; [5],
if for each cover {V, | @ € V} of X by 7; semiopen sets with respect to 7;, there
exists a finite subfamily Vg of V such that X = U{r; — clV, | a € Vo}, i,5,=
1,2,i # j. X is called pairwise S—closed if it is 7; S—closedwith respect to 7; for
i,5,=1,2,i# 7.

Definition 1.8. A subset Y of (X, 7y, 72) will be called 7; S—closed
with respect to 7; in X [5], if and only if for every cover {V, :a € V} of Y by
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T; semiopen sets with respect to 7; of X, there exists a finite subfamily Vg of V
such that Y C U {r; — V4 | @ € Vo}, where #,5,=1,2,i # j.

Theorem 1.4. [5] A subset Y of (X, 7y, 72) will be 7;, S—closed with
respect to Tjy,, if Y is 1; §-closed with respect to T; in X and Y € T;, where
i’j = 1,271.#].'

Theorem 1.5. [5] If a subset Y of (X,m1,72) is Tiy, S—closed with
respect to T;, and'Y € 1 N1, then'Y is 7; S-closed with respect to T; in X, for
i,j=1,2,i#j.

2. Pairwise S—closed subspaces

Lemma 2.1. [2] Let (X, 11, 72) be a bitopological space, Y C X pairwise
dense sct. If U is nonemply T;-open set (i = 1,2), then UNY # 0.

Lemma 2.2. [2] Let (X, 7y, 72) be « bitopological space. Let U andY be
the subsets of X. If U is a T;,—semiopen set wilh respect to T; and Y is pairwise
dense set, then

Tj—CIUCTj—'Cl(UnY)s la.7=172’17£]‘

Lemma 2.3. Let (X,71,72) be a bitopological space and V,Y subsets
of X. If V is ; semiopen with respect to T; and Y is pairwise dense set in X,
then VNY is 1;, semiopen with respect to 7j,., 4,5 =1,2,i # j.

Proof. If V is an empty set, then it is clear. If V is a nonempty set
then there exists a nonempty 7;—open set U such that U C V C 7 — ¢lU. Hence
UnY cCcvVnY Crj—cdUNY. By Lemma 2.1 UNY # 0. Clearly, UNY is
Tiy—open set and if we use Lemma 2.2 we get

vnyYcvnYcCcrn—-dUnY Crj—-cd(UNnY)NY C 1 —c(UNY).
This completes the proof. n
Lemma 2.4. Let (X, 71, 72) be a bitopological space and A CY C X.

If A is 1;, semiopen with respect to Tj,., then there exists a T; semiopen set V
with respect to 7; in X such that A=V NY, where i,j =1,2,i# j.
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Proof. Since A is 7;, semiopen with respect to 7;, we have U C AC
7jy — clU for a 7j,—open set U. Let U = O NY for 7—open set O. Therefore,
we obtain

OCAUO C (rjy —cU)UO C (1 —clU)UO C 7j —clO.
Put V=AUO.
(AuO)NY =(ANY)u(ONnY)=AulU=A4
This completes the proof. ]

Lemma 2.5. Let (X,71,72) be a bitopologicai space and A C'Y C X.
Then, we have

(a) If A is pairwise dense set in X then A is pairwise dense set in Y.
(b) If A is pairwise dense set in X then'Y is pairwise dense set in X.

Proof. (a) Let VI € 1y, W1 € 12, and VIN W1 # . There exists 71—
open V such that V7 = VNY and there exists 7,—open W such that W7 = WnY'.
Since Wrn Vs # @, then WNV # 0. Since A is pairwise dense set in X, then
VAWNA#®. Since A CY, then WnVrnA # (. This shows that A is
pairwise dense in Y.

(b)Let Ver, Wer,and VAW # 0. Since A is pairwise dense set in
X,then WNVNAG#®and since A CY, then WNV NY # 0. This shows
that Y is pairwise dense set in X. =

Remark 2.6. In a bitopological space (X, 7y, 72), for any subset Y which
is 7; §—closed with respect to 7; is not necessarily 7;, S—closed with respect to
Tiy Y, 4,5 =1,2,i# j.

Example 2.7. Let R be the set of real numbers, 71 the usual topology
of R, 75 the topology of countable complements of R and N the set of positive

integers. Then N is 7y S—closed with respect to 5. Infact N is 75 S—closed with
respect to 7; in R but N is not 7, S—closed with respect to 7.

Theorem 2.8. LetY be a pairwise dense set in the bitopological space
(X,71,72), Then'Y is T;y, S—-closed wilh respect to 7j, iff Y is 7; §-closed with
respect to T; in X, where i,j = 1,2,1 # j.

Proof. Let Y be 7;, S—closed with respect to 7j, and {Vo | € V} a
cover of Y, where each V, is 7; semiopen with respect to 7;. Then by Lemma
2.3, V,NY is 7;, semiopen with respect to 7j,. for each @. By hypotesis we
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have Y C U{rj, —cl(VaNY) | @ € Vo} where Vy is a finite subfamily of V.
Therefore we have Y C U {; — clV, | @ € V}. This shows that Y is 7; S—closed
with respect to 7; in X.

Let Y be 7; S—closed with respect to 7; in X and {V, | @« € V} a cover of
Y, where each V, is 7;,, semiopen with respect to 7j,.. By Lemma 2.4, for each
V&, there exists a 7; semiopen set U, with respect to 7; such that V,, = U, NY.
Then Y C U{U. | @ € V}. Since Y is 7; S—closed with respect to 7; in X then
Y Cc U{rj — clU, | @ € Vg}, where Vy is a finite subfamily of V. By Lemma
2271 —clUy C 15 —cl(UsNY) and hence 75 — clU, NY C 75, — cl(Usy NY).
Therefore, we have Y = U {7;, — clV, | @ € Vg}. Then Y is 7, S—closed with
respect to 7y, . ' n

Remark 2.9. Let Y be a subset of the bitopological space (X, 71, 72).
Any subset of Y which is 7; S—closed with respect to 7; in X is not necessarily
a 7;, S—closed with respect to 7, where ¢,5 = 1,2,7 # j.

Example 2.10. Let R be the set of real numbers, 7; the usual topology
of R, T2 the topology of countable complements of R, N the set of positive
integers and Z the set of integers. Then N is 7 S—closed with respect to 72 and
79 S—closed with respect to 73 in X but N is not 7y 5 9—closed with respect to
T25-

Theorem 2.11. LetY be a pairwise dense subset of the bitopological
space (X, 11,12) and A CY. Then A is 7;, S-closed with respect to T;, iff A is
7; §—closed with respect to 7; in X, where i,j =1,2,i# j.

Prool. Let A be 7, S—closed with respect to 7j, and {V,|a € V}
a cover of A, where each V, is 7; semiopen with respect to 7;. By Lemma
23 Vo NY is 7;, semiopen with respect to 7;,, for each a. Since A is 7;, -
closed with respect to 7;,, then A C U{7j, — (Vo NY)|a € Vy}. Therefore,
ACU{rj —clV, | a € Vo}. Hence A is 7; S-closed with respect to 7j.

Let A be 7; S—closed with respect to 7; in X and {V, | « € V} a cover
of A, where each V, is 7;, semiopen with respect to 7;,. By Lemma 2.4,
for each V,, there exists a 7; semiopen set U/, with respect to 7; such that
Vo =UxNY. Since A C U{U, | @ € V} and A is 7; S—closed with respect to
7j, then A C U{7j — clU4 | @ € Vo}, where Vj is a finite subfamily of V. By
Lemma 2.2. 7j—clUqs C Tj—cl(UaNY’) and hence 7;—clUsNY C 75, —cl(UxNY).
Therefore, A C U{Tj, — clV4 | @ € Vo}. Hence A is 7;,, S—closed with repect to
Ty

Corollary 2.12. Let A be pairwise dense subset of a bitopological space
(X,71,72) such that ACY C X. Then A is a pairwise S-closed subspace of Y
iff A is a pairwise S—closed subspace of X.
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Proof. This follows from Lemma 2.5, Theorems 2.8 and 2.11. =

Theorem 2.13. Let Y be a pairwise open set in the bitopological space
(X,m,m2) and A CY. Then A is 7;, S-closed with respect to Ty, iff Ais
S-closed with respect to ; in X, where i,j = 1,2,i # j.

Proof. Similar to the proof of Theorem 2.11. u

Corollary 2.14. Let A and Y be pairwise open subsets of a bitopological
space (X, 71,73) such that A CY C X. Then A is a pairwise §-closed subspace
of Y iff A is a pairwise S-closed subspace of X.

Proof. This follows from Theorems 1.4, 1.5 and 2.13. [
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