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This research is concerned with the multi-integral iteration methods for solving a
non-linear dillerential equations of fifth order with boundary conditions. The existence and
uniquencss of the solution generated by the Picard method are established. The bounds on sup
norm for the derivative of a certain function f contained in considered dilferential equations,
are computed. The rate of convergence of the iterative sequence of approximate solution is
discussed and obtained. Some numerical examples are given.
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1. Introduction

This paper deals with a class of non-lincar boundary value problems
arising in the scientific and industrial application problems. The solution of the
following non-lincar fifth order differential equation (NI'DL) is considered:

d5

u
1.1 —_— x,u) = e(x x
(1.1) e + f(z,u) = e(x), 0<a<l

under the boundary conditions
(1.2) w(0) = w'(0) =« (0) = w(1) = «'(1) = 0,

where f(x,y) is a continuous real valued function for every @ € [0,1], ¥y € R,
differentiable for every y, and e(x) € L1[0,1].

Several authors considered methods for solving nonlinear differential equa-
tions [2-5]. Gupta [1] established and proved theorems for the existence and
uniqueness of the solution to the deformation of clastic beam equation u®) +
f(z,u) = e(),0 < & < 1. Sharma and Gupta [7] applied the multi-integral
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iterative methods to obtain numerical solutions of non-linear fourth order dif-
ferential equation under several different boundary conditions. Theorems for
the existence and uniqueness of the solution were established. Also, the rate
of convergence for the sequence generated by the iteration method under the
upper bound sup |f,| < 96, was obtained. In [6] Salah used the multi-integral
for solving a non-linear singular two-point boundary value problem.

The main goal of this paper is to present Picard type implicit methods to
compute solutions to non-linear equation (1.1) under boundary condition (1.2).
In Section 2, Theorem 1 gives a multi-integral representation of the solution.
Theorem 2 proves that the condition sup |f,| < 318.78437 is suflicient for the
existence of a unique solution of our problem. In Section 3, the errors and the
rate of convergence are discussed and obtained for some examples.

The following notations are used throughout the paper. The sequence of
points generated by every iteration is denoted {u*}. A superscripted function
means the value of the function evaluated at a particular point. For example,
uk = uixy), = e(xk), Fad— f(ur,2) and so on. Finally, all the norms used in
this paper are {,-norms.

2. Multi-integral method

We will establish the solution of problem (1.1) under boundary conditions
(1.2). The following theorem describes the method used for this purpose.

Theorem 2.1.  If u(x) is the solution of (1.1), (1.2), the real valued
Junction f(u,x) is continuous for every x € [0,1], y € R, differentiable for every
y ,and e(x) € L'[0,1], then :

. 1 s v
w(x) = %2 (1-2?) /0 /o‘t/o ./0 r [e(r) = f(r,u)] dr ds dl du

(2.1) +/x1 ;Ll? /Ou /Ot /08 /Or r [e(r) = f(r,u)] dr ds dt du dv.

Proof. Since u(x) is a solution of (1.1),(1.2), then we have
uB)(z) = e(z) - f(x,u),

multiplying both said by r and take integration four times, we goet

x i 8 r xr t s r.
/ / / / r u(s)(r) drdsdtde = / / / / r[e(r)=f(r,w)) dr ds dt da,
o Jo Jo Jo o Jo Jo Jo
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i.e. :
@' (x) — 4 w(x) + 4 w(0) + 32 w'(0) + 2% «" (0) + (i a® " (0)
6

(2.2) = /Oz At /0s /07‘ r {e(r) — f(r,u)] dr ds dt dw.

Since u(0) = «'(0) = «"(0) = 0, then (2.2) becomes

e ' (x) — 4 ula) + 2% «"(0)

(2.3) = /t /s /r r [e(r) — f(r,u)] dr ds di dx.
o Jo Jo

But u(1) = 0,u'(1) = 0 (given); substituting x=1 in (2.3), we have

(2.4) w'(0) = /()1 /Ot /Os /Or r [e(r) — f(r,w)] dr ds dt du.

Therefore, from (2.3) and (2.4) we have
, 1 t s rr
v u(x)—4u(z) = —a? / / / / r [e(r) = f(ryw)] dr ds di dx
o Jo Jo Jo

T t s s
+ / // / r [e(r) — f(r,w)] dr ds dt dz.
o Jo Jo Jo
This implies

(E%l)l = _:Tl /01 _/ot /08 /Or r [e(r) — f(r,u)] dr ds dt dx

Integrate both sides of (2.5) from « to & (for a > 0), we get

'. p 1 1 1 1 t rs T
T—L:%:—) - uaL(:-)- = glg— -(:5) /0 /0 /0 /0 r [e(r) = f(r,u)] dr ds dt dz

T 1 u t s T
(2.6) + / - / / / / r [e(r) = [(r,w)] dr ds dt du dv.
Ja U Jo Jo Jo Jo

Substituting # = 1 in the above equation (u(1) = 0 given), we get

w(a) 1 1 voptopeogr
prali ——2-(1— ;2-) /0 /0 /0 /0 rle(r) = f(r,uw)] dr ds di de
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1 u t ps r
(2.7) —/ é / / / / r [e(r) = f(r,u)] dr ds dt du dv.
a U Jo Jo Jo Jo '

From (2.6), (2.7), we have

2 1 t prs pr
u(x) = —L2—- (1-2?) /0 /0 /0 /0 r [e(r) = f(ryu)] dr ds dt du
1 u t ps pr
—at /z -Jlg /0 /0 /0 /0 r [e(r) — [(r,u)] dr ds dt du dv.

This completes the proof of the theorem. ™

The following theorem proves that the iterative sequence {n"‘} of the
solution of (1.1), (1.2) is a Cauchy sequence.

Theorem 2.2. If the ileration process

2 1 pt rs pr
ubti(2) = % (1-2% / / / / r [e(r) = f(r,u¥)] dr ds dt du
o Jo Jo Jo
1 1 u pt ops pr
(2.8) - / 3 / / / / r [e(r) = f(r,u¥)] dr ds dt du dv,
z U Jo Jo Jo Jo

k = 0,1, sup|fu| < 318.78437 and ||u*|| < Ci, then the scquence {u*}
convergent.

Proof. To proof the theorem, it is enough to show that the sequence
{u*} is a Cauchy sequence. Indeed, for arbitrary n,m which arce sulliciently
large, we have:

"2 1 t 8 r
(u" —u™) = %(1 = a:2)/0 /0 /0 /0 r[f(r, u”‘_l) = f(ryu™ ™Y dr ds dt du
(2.9) "/ / // / r[f(r,u™ ") = f(r, ")) dr ds dit dudv.

Taking the absolute values of both sides of equation (2.9) and using the mean
value theorem, we get

a2 1 pt s pr
woird (o= [ [ [ [ rirtsad
+ at / u5/ /// rdrdsditdudv} |Ju"" — m_lll}

- Tl +
sup i 1 = =t (S,

no__ um'

IA

|
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Now we put p(z) = 2% + a* — 225. Then for ¢ > 0, we get

n_ < n—-1_ ,m-—1 Pmax < Slll)iful n—1 __ ,m—1
lu™ =™ < sup [ful [u"7 = o™ U5 < grg7gagy 1V

I""’l
(2.10) < K™ |[u™™ — 0| < 2(11-1:—1( < e

6 P = - _suplful
where pyax = p(318.78437) i,nd K = 31878437 € (0,1).

Then the sequence u” is a Cauchy sequence.
This completes the proof of the theorem. ]

Corollary 2.1. The number m of ilerations of our method with con-

vergence tolerance € is at least

m = lne — €n2 — nCH
~ Ensup|fu| — 5.76452

+ 1.

P roof. From inequality (2.10), we have 2 K™ Cy < ¢. Directly we can
proof the lemma by taking the £n on both sides. ]

The existence and uniqueness of the solution of non-lincar differential
equation (1.1), (1.2) are established from the above two theorems under the
condition sup | f,| < 318.78437.

3. Numerical results

We conclude the paper by reporting some numerical results, obtained
from a set of test NFDE problems. These numerical results describe the per-
formance of the algorithm. The tables indicate the convergence pattern of the
- iterative sequence of approximate solution. In all these examples Simpson’s
method is used to approximate the integrals. In the tables ¥ denotes ||u — u*||,
¥ denotes ||u* — u*~1|| and R* denotes ¥~ /c¥ (the rate of convergence). The
algorithm has been tested on the following set of problems.

Example 1.
g ds'u 2 _u2 5 I 8( wa] (4
(3.1) g tae u =360(22— 1)+ 2%x —1)3e™® (==
with boundary conditions

m

(3.2) w(0) = u'(0) = " (0) = u(1) = u'(1) = 0.

The solution to (3.1), (3.2) is u(z) = 23(z — 1)
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Table (3.1): Error analysis for (3.1), (3.2)
Iter Eg ek R

1 1.213471-02 | 4.0238315-02 _—

2 1.19513-02 | 3.9788413-04 | 1.01131154-02

3 1.10029E-02 | 6.3008515-06 | 6.31477E+01

4 1.10028F-02 | 1.938631%-07 | 3.25016154+01

Example 2.

(33) Z’L‘l‘: +a e~y = Cg .’L'3 _ 26127 .’132 iE 720 2 + (.’L'9 _ 2:1:8 + .'L'7) c-—.r‘(i(]_a‘.)2

with boundary conditions

(3.4)

u(0) = u'(0) = u

"

The solution to (3.3), (3.4) is u(z) = 2%(1 — ).
Table (3.2): Error analysis for (3.3), (3.4)

(0) =wu(1)=4'(1) = 0.

Iter

cu

P

Rk

1

1.23341E-04

4.6578812-02

1.89411E-04

5.5017613-04

8.4661615401

1.65025-04

2.449461%-05

2.24611E401

1.44018E-04

8.966301:-07

2.731851E4-01

(S EVCIE )

1.44018E-04

3.8674912-08

2.31838E+401

Example 3.
d5u
da®

(3.5)

with boundary conditions

(3.6)

u(0) = «'(0) = u

m

The solution to (3.3), (3.4) is u(z) = 24(1 — )2,
Table (8.3): Error analysis for (3.5), (3.6)

+22eu =240(32 - 1) + (x% — 227 4 2) == (12"

(0)=w(1)=u'(1) = 0.

Iter ek e RF
1 1.76528E-03 | 3.6458115-03 =
2 1.86320E-03 | 5.0915215-04 | 7.16055E400
3 1.46946E-03 | 8.9741515-06 | 5.6735415401
4 1.46811-03 | 1.8004515-07 | 4.98439E401
5 1.46811E-03 | 6.3251615-08 | 2.8464915401

S.M. Lil-Sayed




On the Multi-Integral Iteration Methods ... 105

In the above three tables column 1 represents the number of iteration,
column 2 represents the comparison between the iterative solution and the exact
solution and column 4 represents the rate of convergence of the iterative solution.
We observe that in column 2 the accuracy achieved is not very high. But this
accuracy is still better than the finite dilference method [7]. The accuracy in the
approximate solution can be improved significantly by using smaller grid size
in Simpson’s method or by using more accurate approximations for integrals.
Which cannot be said about finite difference or finite element. Our methods on
the other hand can be applied to NFDE with various boundary value problems.
Also, they can be applied to all the natural, scientific and industrial non-linear
boundary value problems.
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