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Let 1 < ¢ < 17/16, and N a sufficiently large integer. In this paper we prove that,
L .
almost all » € (N,2N] can be represented as n = [p1°] + [p2°], where p1,p2 < N are prime
numbers and [2] denotes the integer part of x. Our method also yiclds an asymptotic formula
for the number of representations of these n.
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1. Introduction

In [2] Tolev and the author proved that every sufliciently large integer
N can be represented as N = [p1¢] + [p2°] + [p3°], where py, p2, p3 are prime
numbers, ¢ is a real number near to one, 1 < ¢ < 17/16, and [2] denotes the
integer part of . The method also yields the following asymptotic formula for
the weighted number of representations:

log p1 log p2 log p3
[p1€)+[p2]+[p3€]=N

(1) _ I'(1/c+1)3
I'(3/c)
where T is the Euler gamma function, L = log N and ¢ > 0 is arbitrarily small.
The study of this equation was motivated by Tolev’s work [3] on a problem of
Piatetski-Shapiro.
In this paper we show how one could obtain an analogous result for the
corresponding binary problem

(2) [P1°] + [p2°] =n, e¢>1.

N1 4 O(Ne ' exp(—L3™9)),
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More precisely, let
Rn)= Y. logpilogps,
[p1]+[p2°]=n

where N/2 < n < N, N is a sufficiently large integer and the summation is over
all primes py,p2 < N ¢ satisfying (2). Our result is as follows:

Theorem 1. Lel 1< ¢ < 17/16, A > 0 and 0 < ¢ < 1/3 be arbitrary
constants. Then

(L 1) . P
(3) Z |R(n) — D{ljes 1) ,/c+ ) n?c"'l|2 & Nt exp(—ALY/3~9),
I'(2/c)
N/2<n<N

Clearly, Theorem 1 implies the following

Corollary 1. Letl <c¢ < 17/16, A, B > 0 and 0 < € < 1/3 be arbitrary
constants. Then for all n € (N/2, N] but O(N exp(—BL'/3~¢)) caceptions, the
equation (2) is solvable with primes py,p2 < N+ and we have

I(1/c+ 1)

21 121 on(_ AT V/B—¢
(/<) ne " + O(N exp(—AL ).

R(n) =

The constants in the < and O-symbols depend on A, ¢ and «.

After this manuscript was completed, it was made known to the author
by D.L Tolev that A. Kumchev and T. Nedeva [1] have recently improved the
results of [2] and [3]. Mainly, they proved that (1) holds for 1 < ¢ < 12/11. The
author is very grateful to D.I. Tolev for this and some helpful comments.

2. Notation and some formulas

Our notations are standard in number theory. Morcover,
¢ is a real number such that 1 < ¢ < 17/16;
7 is a positive number such that n < 0,001 ;
N is a sufliciently large integer;
n,m are integers; p denotes a prime number;
[] is the integer part of the real number x;

[|z|| = minjz — n|; e(z) = exp(2miz);
nez

L=logN; Q=NYe; w=Q"°" E=-exp(—AL'?¢); P= LEE-5
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S(z) = Zlogp e(x[p%); G(z)= % E m'e=le(axm);

pP<Q m<N
w 1-w
Ry, = / S(x)%e(—nw)dz; Ry = / S(2)2e(—na)da;
-;72 “ w .
H = G(z)%e(—na)d; Hy = G(x)%e(—nz)dz.
-1/2 -w

We recall the following formulas from [2] (see also [4], Ch. 2, for (4), (6)
and (8)).

2 2 1
(5) Jmax | S(@)| < Q1 log® Q,

(6) I, - <K / |G(x) P da < Q* ¥, for some v > 0,
w<|z|<1/2

™) / " 18(2) Pdz < Q" log Q,
1/2
(3) [ 6@ P <@,
—-1/2
(9) e | $(z) - G(2)| < QE.

3. Proof of Theorem 1
It follows from (4) that

N 2
> |R(n) - L(/e+1)" nEP <« Y Ry - H|P 4 NQE
I'(2/c)
N/2<n<N N/2<n<N
(10) + Y R

N/2<n<N

By Bessel’s inequality, Parseval’s identity, the prime number theorem and
(5) we have

Z |Rao|* < /

N/2<n<N w ,
(11) < QUFEHS o« N1 Y

1-w

1
N4l ; () )2 e W2
IS@'ar < (o | 15@) D [ |50
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T'he inequality (6) implies that

(12) Z IRy — H|* < Z |y — ) + NQi=2e=2v,
N/2<n<N N/2<n<N

Hence, from (10), (11) and (12), it follows that (3) is implied by

(13) Y IR - ILfP < NETUES,
N/2<n<N

We write
Ry — I = / NEOEREO8 ( / " (5(9) = Gy)e(nlz — y))dy) da.

|
Then, using the Cauchy-Schwarz inequality and the well-known estimate Z e(nz) €
a<n<b

min(b — «, 1/||z]]), from (7) and (8) we obtain
SR -
N/2<n<N :

: w . 1N, )
(14) <<Q3_%°L" sup/ S(y) = G(y)|* min (N, m—— l/;'/)
5= Gtitnin (¥ )

|2l<w
Now we note that, uniformly with respect to |r| < w, we have

w 1 2
; 2 i S <
/—WIS(y) - G(y)|* min (N, = yll) dy
2 fw

< Nz/ 1S(y) - G(y)*dy + N [ 18(y) - G)l*dy.
o~ F et flnl-ww] Pz,

We estimate the first integral by using (9) and the second one by using (7) and
(8). Therefore, we get

w ) | . ) i
|S(y) - G(y)lzmill (N, ——1——) ll‘l] & N2Q2——L(P]3/2 4 P 21/4)
v lle = yll
1

<« N2Q*°LIES.

We substitute this formula in (14) and then we obtain (13). Theorem | is proved.
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