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By means of rational interpolation we built the quadrature formulas generalizing clas-
sical Ganss formulas at Chebyshev nodes of the first and sccond type as well as at Jacobi nodes
when o = = =1/2.
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Introduction

The first complete studies of quadrature formulas by means of the prop-
erties of some special rational functions belong to B. Bojanov [2] and IL.L. Locb,
Y. Werner [6]. Later, some authors, such as 1.J. Newman [7], J.-I5. Andersson
[1], W. Gautshi [3], W. Van Assche, I. Vanherwegen [9], G. Lopez, J. lllan (8],
studied quadrature formulas by means of rational approximation. In particular,
they used rational interpolation and orthogonal systems of polynomials with a
variable weight. But this research did not involve certain systems ol orthogonal
rational functions.

In the present paper we applicd orthogonal properties on the segment
[-1,1] by weight (1 — &2)¥1/2 of rational functions systems introduced into
[5], we built a new orthogonal by weight /(T —«)/(1 + «) system of rational
functions and studied the corresponding quadrature formulas of interpolation
character.
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1. Orthogonal rational function systems on the segment

Let {ax} be an arbitrary sequence of complex numbers with g = 0,
ap < 1, k € N, and define

Co(2) = 1, Culz) = Yool

d N.
1-a@,z Hl—akz’ ne

(1)

1.1. M.M. Dzharbashyan and A.A. Kitbalyan [5] have introduced the
following systems of functions:

(2) Méo) =1, MO(z)= % (Cn(c"o_) + C,L(e_io)) , neEN;
3) MWM(z)= ( 0¢a () - ¢ "0)) [2isinf, n € N; a = cosé.

The system of functions {]v (1 )} is orthogonal on the segment

[—1,1] with respect to the weight (1-22)~ 1/2 {he system of functions {A[( ) )}

n=1
is orthogonal with respect to the weight (1 — «2)!/2,

Lemma 1. The functions M,(,O)(:v) and M} )(a,) are rational of order
n, n € N.
Proof. It is not difficult to check that if z = z £ V&% — 1, then
z—ap (14 ]ak?) 2 — 2Reay £ (1 — |ag]?) Va2 — 1

1—51;2: 1+ﬁz—2ﬁkm v k=0n-1

z z—a, Vet -1

l—apz 1-2®,0+a2

Substitution of the obtained expressions in (2) and (3), leads to the con-
clusion of Lemma 1.

Lemma 2. If the numbers ay, k = 1,n—1, are real or mutually
complex-conjugate, with ag = 0, a, € (—1,1), then the following caxpressions
hold:

(4) a) MO(z) = ———‘”‘

1T a cos fi, (),

where
T -« = T+ a
T — Qn X k
ptn(x) = arccos E arccos

+ . )
V1-2a,2 4+ a2 = 1+ apa




Ol'l;.llog01|a.l Systems of Rational Functions ... 189

2a; -
(5) ap = ——%_ k=T,
1+ az
V1—dZ . ,
(6) b)) MV(z) = Y sin g () /\/1 a2,

where pi,p1(2) = arccos @ + pn ().
Under these conditions, the functions .M,(LO)( x) and AI,(LI)( ) cach have n
simple roots on the interval (—1,1).

Proof. f 2z =2 ++va2 -1, then

z—ak_m‘i'aki 1—"'12.-\/"’2"1

— = etin()
1—agz 1+ ape ’

(7)

where +
@+ ay —
7k(2) = arccos %—_}_—ak—’"{, k=Tn-1.

In a similar way,

V15— |a,|2z _V 1-af (73 — o £ Vat ~ I) _ . [V1-dl ctim(@)

l—a,z 1-2za, + a2 14+ aya

(8)

where
T — Qp

&) = arccos ;
m(®) V1-=2va, + a2

Assuming that a; € C and aj41 = @y, then we obtain as f[ollows:

Z—=Qp Z— Q4 _ E g Z = Q41

1—a-k21—a-k+12 - 1—(Yk£1—(\‘k+13'

Taking into account this equality, relations (7) and (8), we obtain the
expression (4) from the relation (2).

In a similar way, we get formula (6).

The second part of Lemma 2 follows from the fact that s, (1) = 0,
fin(—1) = o and since

1-za — 1w~k -1
d@)= | ————+ k e 0, @ -1,1
/'n( ) <1 _ 2:l:an + a% k; 1 +(Lk$ m’ /’l‘n(,l‘) < ? t e [ ’ ]’

the function p,(2) decreases monotonically on the segment [—1,1]. ]
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It is worth mentioning that functions /\I,(,O)(:lr) and 1\-.-1’,(,”(.1:) have been
determined by using the numbers ay, ap € C\ {(—occ, —1]U [, +)}, k = 1,n,
and not by using the ai, |ax| < 1, & = 0,2 numbers (see (5)).

Lemma 3. If the condilions of Lemma 2 are fulfilled and «,, = 0, then
the function A/[,(,O)(:v) is the rational cosine-funclion of Chebyshev-Markov and
the function A'I,sl)(:v) is the sine-function of Chcbyshev-Markov (see [11], p.47).

Lemma 3 is direct consequence of Lemma 2. We emphasize that the
sequence of the corresponding rational Chebyshev-Markov functions (cosine-
function- ar sine-function) is, generally speaking, not an orthogonal system.
HHowever, cach Chebyshev-Markov function can be regarded as the clement of
some orthogonal system of rational functions.

1.2. Let

N Ga(t) 141t ) o
9)  Qu(x)= 3 / Py yPr di, 2 € [-1;1], n=0,1,...,

|t|=/’n

where the number p,,, p, > 1, is chosen so that the points a,"_", k = 0,n, are
outside the integration contour. Then, it is casy to observe that the integrand
has two simple poles at the points of @ & Va2 — 1 in the circle |I] < p,, and,
consequently,

U —i0 i0 —i0y R
(10)Qu(#) = 5—— ((1+ ™) €u(e®) = (1= ) Cu(e™™) ;2 = coso.

Hence, with the help of equalities (7).(8) and (1) it is casy to see that
the function @,(z) is rational of n order.

Theorem 1. The system of ralional functions Q,,(x), n = 0,1,..., is
orthogonal on the segment [—1, 1] with respect lo the weight \/(1 — 2)/(1 + 2).

Prool. Consider the integral .

l1-2 P T
T me(:L)Q"(.’L ylae, m,n=0,1,...

Let us use the representation (9) to get

Jn = / Cm(t) / Q”("')

Itl Pm lul=pn

(l u
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. 1—-a da
(11) / 1422 —-2tx+ 1)(u?2—2ux+1)"

It is not (lll'ﬁcult to find that

1
1—a - dzx T ; ;
/ Vite (2 =2tz +1)(u2 —2uz + 1) ~ (1 +£)(1+ u)(tu— 1)’“| > L ful > 1.
-1

[
Substituting the achieved expression into (11) we find

Jin = — / Cm(t) / Qu( )u(“‘fu

'tI—Pm “I'—I)n

The integrand of the inner integral has the singular point w = 1/t in the
circle |u] < pn, pn > 1. Consequently,

1 (lu - 1
oxi S

l“l—Pn
—1 di
Jgn" '—' .2_7|' / QHL([)(-'H () t K

|t|=Pm

and

Taking a limit as p,,, — 1, we get

—i ™ — (l[ l » -~
T =g [ OTOF =5 JRECHGI
lt|=1 |t|=1

Now, we can use the orthogonal system {(,,(£)}3° on the unit circle (see
[4]). Theorem 1 is proved. u

Assume that ap = 0, k£ = 0, n, then it is evident that

.  _ sin(n 4 1/2)0
@n(2) = sin6/2

i.e. Q.(2) is the well-known Jacobi polynomial.

, a=cos#,

Lemma 4. The function Q,(x) has n simple zeros on lhe interval
(=1, 1) and the following expression represenlalion holds

’ Vi-aZ .
Qu(z) = 2—1-_'_—“? Sin pt, 41 /2(2)/ V1 — 2,
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where

n—1
1 € — oy, x4+ ay,
Jlng1 /2( &) = — arccosx + arccos E arccos ———

+ .
2 V1=202+ a2 = | + agx

The proof of Lemma 4 is similar to that of Lemmas 2 and 3.

®

2. Quadratures of Gauss type

The quadrature formulas of this type, built by mecans of rational approx-
imation, were discussed, as an example, in [3],[9],[10].

Let h be weight function on the segment [—1,1], i.e. h be non-negative,

1
integrable and [ h(z)dz > 0.
=i

Let the numbers aj, 5 = I,n — 1, satisly the following condition: if at
some j, j = I,n— 1, Ima; # 0, then also the complex conjugate @; is among
the numbers. Furthermore, if a; € R, then |a;| < 1.

Let us introduce the following symbols:

n—1
R,-1(a) = P,—1(2)/ H(l +a;x)| Pho1 € Py

i=1

n—1

R2n—1,2(a) = P2n—1(-'v)/ H(l + (lj-'")zl 1)‘271—-1 ceP 2n—1
J=1

where P, is the set of algebraic polynomials of degree not greater than m.
Thus, R,,—1(a) contains algebraic rational functions of order not higher than
n — 1 with poles at the points —ui'l, -—az_l,..., —n;_ll, Ro,—1,2(a) and is a set of
rational functions of order not higher, than 2n — 1, with the same poles but of
double multiplicity.

Then, let g, € P, be polynomial orthogonal with respect to the weight

n—1
h(z) T (14 a;x)~? on the segment [—1,1]. The polynomial ¢, is known to have
J=1
n simple roots on the interval (—1,1):
“l<2<a2<...<a, <1, quxx)=0, k=T,n.

For any function f, defined on (—1,1), let us built the interpolating
rational function

Ln—l(m’ f) = Z f(.’l'k)l/;(ilf),
k=1
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where
- n—1
l(x) = ta(z)/(z — zp)th(zk), k=105  Lu(2) = qu(®) H(] + aja)”t.
=1

It is easy to see that L,_;(a, f) € Ry,—(a) and for any function r,_; €
R—i(a), Lu—1(2,7h-1) = rp—1(2). »

Now, for a function f, integrable with weight i on the segment [—1, 1],
we examine the quadrature formula:

1 n
(12) / W) f(@)de = 3 Af(2a),
-1 k=1
where
1 . 1 4 & ,
(T . T
A = /h(a:)lk(n.)dn, = 7o) /h(n,)m—_;;d.m, k=1,n.
-1 -1

The following properties arc analogous to the known theorems of Gauss
quadrature formulas (see, for example, [10]).

The quadrature formula (12) has the (ollowing properties:
1) It is exact for any rational function r,_y € R,,—; and rg,—1 € Rgy—1,2;
2) The coefficients Ay, k = 1,n arc positive and

p 1 2 s
3) A, = 737157)'!1 h(.’u)éﬂ%dw, k=1,n;
4) The following equality holds

n 1
Z Ay = //I.(:I: ).
k=1 1

If f € C[-1,1], then the following inequality holds for the quadrature
formula (12):

1 n 1
/.h(a:)f(:v)da}— Z Arf(xr)| € 2Rap—1(f, @) / h(z)dz,
1 k=1 21
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where Ran—1(f,a) = inf 1/ (%) = r2n-1(2)|l¢(-1,1) is the best approx-
r2n-1€02n-1,2
imation of the function f by means of rational functions from Ry,_1,2 on the

segment [—1,1].
3. Special cases of Gauss-type quadratures

Let the numbers ax, k = 1,7, be real and a; € (—1,1), or mutually
complex-conjugate, with ag = a, = 0.
3.1. Let us denote by m,, the rational function of Chebyshev-Markov:

my,(2) = cos i, (),

where

noyf1-af
(@) = =An(@)/ V1= 22, Aafa) = 3 S—.
k=

. 1+ ara

The m, function has n simple zeros on the interval (-1,1) (see [11], p
48): =1 < Ty < Tp—y < ... < @1 < 1, my(2x) = 0, k = 1,n. For any function
f € C[~1,1] we shall construct the quadrature formula:

n

1
(13) / =i Ay n 3 Mnd(e)

where

A =

1 f mp(z) dz \/ -} cosjiy(x) dx EeTs
m, (zk) 11"—1'7l=\/1—.'z:i An(2) / r—xr V1-2a2 ki
(14) -

Theorem 2. The quadrature formula (13) has the following form

1
(15) / e LI I enE

and for its remainder the following estimale is valid

1
(16) [ f(z) Z/\n( f(x1)| < 27 Ron_r(f, ).
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Proof. Let us calculate the integral

1
my (2 lx
Jnk . n( ) o

. x—ap/1—a?’

Let us substitute z = (1 — ¥%)/(1 + y?). Denote by M,(y) = mu((1 —
¥2)/(1 + y?)). As it is known, see [11], p.47, the function M, is the Bern-

stein rational function on the real axis and has zeros at the points fyy, yp =
V(1 =2)/(1+ k), £ =T1,n. We get

1+ 9 °°M()
—- yk n\Y
I = -1 [ L),
k
—00

Let us evaluate the ingegral
1 [ Ma(y)
J,.(z) = -2- / m(ly, z€C, Imz>0.
—00

From [11] we derive

M(y) = -(Hy_z + 112 7"‘),

m=1 m=1 Y= 2m

where z; are the roots of equation y2 + 1tk = aa. =0,and Imz > 0, k = 1,n. Let us

also emphasize that the numbers 2z, k = 1,7, will be arranged synunetrically
with respect to the imaginary axis.
Evidently,

Y—2n Y—Zm
z — res
u( ) ( y—z y2 - 22 n];]l Y- Zm yu—% y2 — 22 H )

Y—2m

=1 2 Zm
Then,
1+ y? L
Ink = — + Y lim . J,(2) = —7rz’1 + Y L
2 zZ = Y, 2y me=1 Ik — Zm
Imz>0
Denote
Yk — 2Zm
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me the fact that u,,(u) =2+ rk, k= T,n, it follows that w, s + @, = 0,
(UJ" k— Wn k) = ( l)k
In this case we find that w, j = i(—1)*.
Thus,

Then formula (15) is a consequence of relations (13) and (14).
Estimate (16) is a direct consequence of Theorem 2 considering that

the function my(z) = Mpn © )(m) is a member of orthogonal system of rational
functions Méo)(z), Ml(o)(:l,),..., M )(a), on the segment [—1,1] according to the
weight (1 — 22)~1/2 and the numbers ay, k = T, n.

3.2. Let vy, be the rational sine-function of Chebyshev-Markov (see [11],

p.49): Vﬂ(-'b') = sin [l:;;+1(:l?)/\/ | — .’L‘2’

where

\/1 —a?
ll'n+l(x)_-'\n+1(z)/\/1—12 Anpr () = 1+Z ‘_

14 ape

Then the function v, is rational of n order and has n simple zeros on the
interval (—=1,1), -1 < 2, < Zp—1 < ...< 27 < 1.
Ior any function f € C[-1,1] let us construct the quadrature formula:

(17) : /\/1 — a2 f(z)dx ~ Z A f(zr),

k=1

A

I
.
S

where
1
_ V1-—a? / Vn(:t)d = (- 1),__“ V1= aq /smy,,.,.l(a:)dT l"

n(xk) T — Tk Ang1(@y) x—

Theorem 3. The quadrature formula (17) is given by

(18) / Vi-a?f(a)de =« Z

and for ils remamder the following eslimate holds

/ V=2 f(a)da —”Z S )| < 7 Rana( @)

TS (k)

’\u+1 (’LL)
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B. Samokysh in his work [12] built the quadrature formula with Cheby-
shev weight of the second type optimal in [H,. It turns out, that the quadrature
formula, deduced by B. Samokysh is a special case of formula (18). It is the case
when @ = ag, k = 1, n, n is an odd number, and such numbers as ay, az, ..., a,
do exist and are the only ones.

3.3. Let Q.(x) = /2sin Hng1/2(x)/ V1 — 2 be the rational function of
Jacobi type orthogonal with respect to the weight /(1 —a)/(1+ ) on the
segment [—1,1], where

1 n 1- af_
l‘:;+1/2(3-') = =Ant1/2(2)/V1 - 22, Apyi(z) = 2 + Z 14 ape

k=1

(see Theorem 1). According to Lemma 4, the function @, has n simple zeros
on the interval (-1,1), -1 < &y < Zp-1 <...<¥3 < L.
For f € C[-1,1] let us construct the quadrature formula:

l n
(19) [ \/ i ; z f(z)de =~ ; Arf(r),

where o 1)"'“ (1 = 2p)V1+ s sin Mn+1/2(~") dz.
Angrje(®n) - J VIt a(e - )

Theorem 4. The quadrature formula (19) is as follows

L
f(m)d'la ~ 7l' n+|/2(LL) I-)

and for its remainder the following estimate holds

\/ ® flapda 7Y 1 S e/ @0)] S 2 Ranea (),

k=1

Theorems 3 and 4 are proved like Theorem 2.
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