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Let (X,d, E) and (Y, p, E) be two sequential complete metric spaces over a topological
semifield E. It is proved that il 7' is a mapping of X into Y and S is a mapping of Y into X
satisfying the inequalities (1) and (2) below, that ST has a unique fixed point in X and T'S
has a unique fixed point in Y.
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1. Introduction

The notion of topological semifield has been introduced by the mathe-
maticians M. Antonovski, V. Boltjanski and T. Sarymsakov in [1].

Let E be a topological semifield and K be the set of all its positive
elements. Take any two elements 2,y in E. If y — @ is in K (in K), this is
denoted by # << y (¢ < y). As proved in [1], every topological semifield I
contains a subsemifield, so called the axis of £, isomorphic to the field R of real
numbers.

The ordered triple (X, d, I£) is called a metric space over the topological
semifield, if there exists a mapping d : X X X T satisfying the usual axioms
for a metric.

2. Main result

We shall prove the following theorem.

Theorem 1. Let (X,d, E) and (Y,p, E) be sequential complete metric
spaces over a topological semifield E. If T is a mapping of X into Y and S is
a mapping of Y into X satisfying the inequalities:
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(1) p(Tz,TSy) << a1p(y, Tz) + bip(y, TSy) + crd(z, Sy),
(2) d(Sy, STz) << axd(z,Sy) + bad(z, STz) + c2p(y, Tx)

for all z'in X and y in Y, where a;,b;,c; in K,a; + bj+c¢; < 1,i= 1,2, then
ST has a unique fized point z in X and T'S has a unique fized point w inY.
Further, Tz = w and Sw = z.

~ Proof. Let 2 be an arbitrary point in X. Define sequences {z,} and
{yn} in X and Y respectively, by
(ST)"z = 2,, T(ST)* 'z =y,
for n = 1,2,.... Using inequality (2), we have

d(zm xn+1) << aZd(xm wn) + bZd(zm $n+1) + C2P(yn9 y'n.+1),
which implies _
d(xﬂ’ xﬂ+1) << tzp(yn, yﬂ+1))
where t3 = c2(1 — b2)~! < 1. Using inequality (1), we have

P(Un, Un+1) << @10(Yn, ¥n) + 610(Yns Yn41) + €1d(Tn—1,Zn),
which implies
P(Yn; Yn41) << 11d(Tn-1,%x),
where t; = ¢;(1 —b;)"! < 1.
It follows that
d(Zny Tnp1) << 120(Uny Unp1) << t1t2d(Zno1,2n) << ... << (L1t2)"d(z,21),

and since 0 << t1t3 < 1, {z,} is a Cauchy sequence in X and {y,} is a Cauchy
sequence in Y. By using that (X, d, E) is a sequential complete metric space, we
deduce that {z,} converges to a point z in X. Because (Y, p, E) is a sequential
complete metric space, we deduce that {y,} converges to apoint w in Y.

Now, by using inequality (1), we have
P(T2,yn) << a19(Yn-1,Tz) + b1p(Yn-1,¥n) + €1d(2, Tn-1).
Letting n tend to infinity, we have
(1 =a1)p(Tz,w)<< 0

and so, Tz = w, since 1 — a; > 0. Similarly, we can prove that Sw = z and
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STz=Sw=2 and TSw=Tz=w.
Thus, ST has a fixed point z and T'S has a fixed point w.

Now, suppose that ST has a second fixed pint 2. Then by using the
inequality (2), we have

d(ST2',8Tz) << agd(2,STZ') +'bad(2,STz) + c2p(T7', T2),

or
(1 - a2)d(#,2) << e2p(T7, Tz),
which implies
d(#',z) << ea(1 — ag) " 1p(T#, Tz).
But by using inequality (1),
p(Tz,TSTZ') << a1p(TZ,Tz) + byp(T2', TST?') + c1d(z, ST?'),
or
(1 =a1)p(T2,T7) << e1d(z,72'),
which implies
p(Tz,TZ'") << e1(1 - a1)d(2,2")

and so,
‘ d(#',2) << e1e2(1 — a1)™ (1 = ag)71d(2, 2').

Since, 0 << cica(l — a1)~}(1 — a2)™! < 1, the uniqueness of 2 follows.
Similarly, w is the unique fixed point of T'S. This completes the proof of the
theorem. .

Remark. In case E = R in Theorem 1, we obtain Theorem 1 of Brian
Fisher [2].
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