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1. Introduction

By CT[0,1] (C°[0,1] = C[0,1]), r = 0,1,2,..., we denote the set of all
functions f :[0,1] — R, with a continuous derivative of order 7 on the interval
[0,1]. For the function f € C7[0,1], » = 0,1,2,... the generalized Bernstein
polynomial of (n,7)-th order was introduced by G.H. Kirov [2]:

(?)
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The author proved, among others, the following theorem.

Theorem A. Let f € CT[0,1],7 = 0,1,2,... and By, (f;2) be the gen-
eralized Bernstein polynomial of order (n,r) for f. Then,

If = Bayr flloo = O(n™"w(f);n=1/2), (2)
where ||g||loo = sup{lg(z)|: z € [0,1]} for arbitrary g € C[0,1] and w(g;s)=
sup{|g(z)— 9(y)|: =,y € [0,1], |z — y| < s} is the modulus of continuity of the
function g in the segment [0, 1].

The modulus of continuity in L,[0, 1] of the function f is the following
function of é € [0,00):
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w(f;8)p = sup{||Anfllp: 0 < h < 8}, 3)

where 1 < p < oo.
For a function f € Lp[0,1](1 £ p < o0) the Kantorovich polynomials are

given by
n k+1/n+1
Bi(f5#)= L ma(e)n +1) /,, I CL O

where py () = (})a*(1 - z)**.
Let us introduce the following Kantorovich type polynomials.

Definition. A generalized Kantorovich polynomial of (n,r)-th order for
a function f, with f() € L,[0,1], r = 0,1,2,... is said to be the polynomial

n k+1/n T i .
By, (f;iz)=)_ pap(e)(n+1) ' +12f o (t)(:c t)dt. (5)

k=0 k/n+1 i=0

For r = 0 from (4) and (5) it follows the equality B}, o(f;z) = By(f; ).

2. Main results

The object of this paper is to give similar results to Theorem A for the
generalized Kantorovich polynomials.

Theorem 1. Let f € C7[0,1], r = 1,2,3,... and B,‘”(f,:c) be the
generalized Kantorovich polynomial of order (n,r) for f. Then,

IBjr f = flloo = O(n~?w(f0;n=1/2)), (6)

Theorem 2. Let f € C"[0,1], r = 1,2,3,... and By .(f; ) be the
generalized Kantorovich polynomial of order (n,r) for the function f. Then,

IB;.f = fllp = O(n~"Pw(f®;a72/2),), (7)
where 1 < p < 00.
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Proof of Theorem 1.

Using the modified Taylor’s formula

207

1@ =3 L0+ 22D [y =1+ ua - ) - FOW)a

=0

and the equality B}(1;2) = 1, from the definition of the modulus of continuity
and (5) of the generalized Kantorovich polynomial, for every = € [0, 1] we obtain:

k-l-l /n+1
1) - By (i) =] Lomatdn+ 1) [ slore

k=0

=Y paa()(n+ 1) /

k=0

=| 3 pns(e)n+ 1) /

k=0 k/n+1 (1' - 1)'

([ a0+ ue - 1) - O at|
ki 1/n z r
< 2 prr(@)nt1)- / e }r - ;I)l

k=0

1
X (/ 1—u)t w(fM;ulz - t|)du) dt
0
Since w(g; As) < (A + 1)w(g;s), A > 0, then

kEY/ped & f‘ ’(t)( t)idtl

k+1/n+1 (.’t _ t)r

w(fOsulz — 1] -n1/? . n712) < (ulz — 2] - 12 4 Dw(FO);n12).

Thus we have the estimate

(@) = B (f12)] < w(F50702) 3 poa(a)(m + 1)

k=0

k+1/n41 |0 _ 4|7 .
« / |z — 1| ' (/ (1 =)t {u|z — t|n1/2 + l}du) dt
k (1‘ - 1) 0

/n+1

k+1/n+1 { |z — t|r+1

= w(f); n1/2y. Ep" g(z)(n+1)- / 1)

k=0 k/n+1

(8
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% n1/2/l w(l — u)""‘du + } il)r' /1(1 - u)"'ldu}dt 9)
0

k+1/n+1 g+l — gl
= w(f);a"1/?). ank(%)(n-i- 1)- / {Laj__tl_n1/2+_|$ i }dt

k=0 k/n+1 (1' + 1)' r!

k+1/n+1 |$ _ t|r+l

— oS st 1y [ EZER

k+1/n+1 tlr
+ ank(l)("-i-l) / = l‘“}'

k/n+1

1/2dt

Using the elementary inequality (a + b)" < 2"~!. (a" 4 b") for a,b > 0
and r=1,2,3,..., we have:

k4+1/n+1 k+1/n+1
/ |z —t|"dt < 2"‘/ |z — k/n|"dt
k

:/n+1 k/n+1
k+1/n41 k+1/n+1
+or1 / lk/n—t|"dt =27~ 0" . / |k — na|"dt
k/n+1 k/n+1
k/n k+1/n+1
4271, / (k/n—t) dt +/ (t- k/n)’dt} (10)
. k/n+1 k/n
B Lt P S ) N g
=2 n e |k = nz|

4 or-1. ( k )T’H' 1 +( n—k \™ 1
n(n+1) r+1 n(n + 1) r+1

1
<2V enTT o —— |k — na|" +

2 1 “(n+ 1)~(r+1),

n+1

So,

n k+1/n+1 |33 |r

Zp,, k(@)(n + 1)/ —-T-—dt

k=0 k/n+1 e

< Zp,,k(:t) 7Tk = na|” + ank(z) oy (r )T (1)
k=0 (r+1)! + )
21 -1 n
=—-n" an k(2)|k — nz|” + (n41)7".

e (-+ 1)!
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Using the Cauchy inequality and the obvious identity

n
Z (Z) *(1 - 2)"* =1,
k=0
we get

Z |k — na|"pnxr(z) < (327‘(3’))1/2’ z € [0,1], (12)
k=0
where Sp(z) = Y j—o(k— nz)"ppi(z), m=0,1,2,..
On the other hand, it is known ([3], p.248), that for every z € [0, 1]
IS ()] < K (m)-nlm/2, (13)

where K(m) is a constant, depending on m, and [m/2] is the integer part of
m/2.
From (11)-(13) the estimate

k+1/n+1 |z l
an g(2)(n+1) / —dt

k=0 !
< 7T K(27) - n
T (2r)-n"/* + ( 1! n (14)

=n""/2. { -V E(2r) + "/2} =0(n""/?)

follows.
In a similar way, we obtain the following estimate

n k+1/n+1 _ ¢4|r+1
Ep,,,k(:v)(n + l)n‘/z/ lx—tl—-'-dt (15)
= kmer  (r+1)!

VE(2r+2) +

The estimates (14)-(15) together with (9) implies (6) and the proof of
the theorem is completed. =

!

< —(T+1)/2 .
oo f X

_(r+l)/2 } '111/2 = O(n-—r/2)-

Proof of Theorem 2.

For p = 1 we have

/01(1 - ) O+ u(e — 1) = FO)|du
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1
< [0+ ue - 1) - fOOdu S w(Oila =ty (16)
0
< (le = t|n'/? + 1) - w(fO; a1/,
Then, by (8) and (16), we obtain
|f(2) = B, (f32)l S w(f);n=12),
k+1/n+1 |z _ tlr

«Sma@nt) [ B (emew e )a an

k=0

k+1/ﬂ+l _tf+1 —tr
—-w(f(') n~1/2), . El’n k(z)(n + 1)/ {la(:r—ll)! B = }dt.

k=0 k/ﬂ (r - 1)!

The next estimates are carried out analogously to the estimates (10)-(13)
for the preceding theorem. Then, by (17), we get: -

|£(@) - B3, (f;2)] < w(fOn71/%), { rh. ﬁ’(:%.—z—\/'—K(zru)

—r—(1/2) T(r+1)- 2ri1 -2 2~ - 2T
+n 2y " K(2r) CEY)
= 0(n™"? - w(f; n-‘/’)l). (18)
Hence, ||B}; . f— flli = O(n~"/2.w(f(r);n=1/2),) and the proof is complete
for p=1.

If 1< p < oo then, by Holder 8 inequality, we have

/ (1= 0) Ot + u(z — 1) — FO)|du
0

1 1/p 1 »/p-1
< { / 1FO(t + u(z - t)) - f(')(t)|pdu} . { / (1- u)p(r—x)/(p-x)du}
a (i}

- p/p—1
Sw(fO;)z—1))p- (pr 11) (19)

_ —1\?/P1
< (le =t/ + 2o S5/, - (221)
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Then we have the estimate

_ p/p-1
|£(@) = Bi,(fi2)] < w(F5n2), - (;’; _11)

n k+1/n+1 |3’ — tlr+1 i Im — tlr
. s glfa g T
X Zpﬂ,k(z)(u +1) /}: { =D n/c 4 =1 dt

k=0 /n+1
= 002 w(fO; 072, (20)
using similar calculation to (18).

Therefore, (20) implies ||B;, . f — fllp = O(n~"/? . w(f(r);n=1/2),), which
was to be proved. ]

Remark. Our theorems are established for r = 1,2,3,..., because the
problems of characterization of || B*f — f||, were treated by many authors. We
mention the following result [1, p.117].

Theorem B. Let f € L,[0,1] and ¢*(z) = 2(1 — z). Then,

IBnf = fll, £ Mwi(f;n7 %), + 07 If1l,), (21)

where wl(f;6) = sup{||Af, f||p : 0 < h < 6} is the Ditzian-Totik modulus of
smoothness.
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