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In this paper existence of simple states for a quasilinear hyperbolic system of PDEs
describing the Josephson’s effect in the quantum electronics is studied. A pure geometrical
approach for finding simple states is discussed. ’
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1. Introduction

We deal with the following quasilinear system of PDEs
ﬁ, = —Cv — Ip(v) sinw + [Go(v) + G1(v) cosw]v
(1) vy = —Lu;
w; = (27 /Bo)v,

where z is the space, ¢t the time. In the physical sense the dependents u, v, w
are defined as follow: u is the tunnel superconducting current, v is the elec-
trical potential on the barrier, and w is the relative phase difference between
the macroscopic quantum wave functions for two superconductors. The real
functions Go(v) and G1(v) are sufficiently smooth in R. Of physical point of
view Go(v) and G;(v) mean the tunnel current and the interference current of
one quasi-particle respectively. By Iy = Ip(v) we mean the critical Josephson’s
current which depends in the real case slightly on v. Therefore Iy can be taken
equal to constant (see Parmentier [6]). By C, L, & denote the following real
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constants: C-capacitance, L-inductance, ®¢ = h/2e is the magnetic flux quan-
tum, where h is the Planck’s constant, a nd e is the electron charge. This system
consists of three Kirchhoff conservation laws concerning the Josephson’s effect
in the quantum electronics. Some similar physical effects arising in this model
were discussed in [6] and [8]. In the existing literature it is customary to see the
reduction of the considered problem into one dimensional sin-Gordon equation
(C®o/2m)wes — (®o/27 L)wey = —Ig sin w,
with the present parameter Ip and Go = G1 = 0. During the last decades this
class of equations was studied by a number of authors applying the well known
inverse scattering method. It is easy to see that the variables u and v take
no place in the sin —Gordone equation that motivates us to pay attention to
the system (1). Hyperbolic systems similar to the system under consideration
were investigated by many mathematicians (cf. [1] and the references therein).
An algebraic approach for solving conservation low systems was proposed by
Grundland (cf. [2]) but for most general cases where the coefficients depend on
t, x, u the Grundland’s approach can no longer be applied. In this paper we
apply a pure geometric method proposed by Tabov in [9] (see also the papers
(4], (5], [10).

In Section 2 we give the well known Grundland’s lemma that is the
necessary and sufficient condition for existence of simple states to the system
under consideration.

In Section 3 we modify the approach represented in [9] where a two-
dimensional case was considered.

2. Preliminaries

In this section we list the assumptions and recall the known existence
result due to Grundland which is needed to develop our main result. Here
we will modify slightly the method represented in [9] since it is specialized in
solving the hyperbolic systems containing two equations. In the present case
the system contains three equations and three dependents u, v, w. By analogy
with [9] we look for two suitable vector fields 7, and 7; represented in the
coordinate basis {0, Oz, 9y, Iy, 0y, 0w}, where 9, = 9/0a, and y stands for one
of the partial derivative of u, v or w with respect to ¢ and z. By these vector
fields we determine a two dimensional distribution which is characterized with
the special property involutivity. This means that the considered problem can
be reduced to an involutive linear homogeneous system of PDEs,

(2) me=0, n9®=0,

where ® = ®(z) (z € R®) is unknown scalar function. In the case when (2)
is involutive taking into account the classical Frobenius theory we can find four
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functionally independent solutions ®; (k = 1,2,3,4) of (2) so that from the
system

(3) q)k(z) = Ck (k =1,2, 374)

by the classical implicit function theorem we derive the existence and uniqueness
of the simple state, that is the solution constructed by Riemann invariants (sce
Jeffrey [3]).

Lemma 1. (Grundland [2]) The system (1) possesses Riemann invari-
ants if and only if the gradients {Vu,Vv,Vw} are collinear.

The Grundland’s lemma can be interpreted in the following way.

Lemma 1’. The system (1) possesses Riemann invariants if and only
if two of the following three equalities hold

UtV — UV = 0
(4) UWy — Uzwy = 0

VW, — Vpwe = 0.

3. Involutivity in RS

Let us combine the system (1) with the conditions (4) (see Lemma 1°),
that is

ur = —Cv + F(v, w)
) Ve = --Lut
(5) we = Mo »

Uty — UV = 0

U Wy — Uzwe = 0,

where F(v,w) = —Ip(v)sinw + [Go(v) + G1(v) cosw]v, M = 2r/®y. Using
similar arguments as in [9] we state the following proposition.

Proposition 1. The vector function (u,v,w) is a solution of the system
(1), constructed by means of Riemann invariants, if and only if (u,v,w) is a
solution of the system (5).

The above statement is a generalization of Theorem 1 in [9].

The system (5) is overdetermined since it consists of five equations, and
the number of unknown functions equals three.

Let us write (5) in the form
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u = —L~ v,
v = —C7[F(v,w) - ug]
(6) we = Mo

UVp — UV = 0

UWy — uzw; = 0.

Now using standard arguments as in [9, 10], we can express vy by u,
v and w. For this purpose we use the latter two equations of (6) yielding the
following algebraic equation

() vz = (L/C)(y* —yF),
where we have set y = u,. Solving (7) we get
(8) v = €y/(L/C)[y* - yF]

(e =+1or —1),i.e. v, = K(y,v,w), where K(y, v, w) stands for the right-hand
side of (8). Hence we obtain

u=—-L1K
(9) vy = —C7HF(v,w) — ug]
we = M.

For (9) we fix the initial condition
u(0,z) = uO(z) € Ju, v(0,2) = %=<) € J,,
w(0,2) = w(z) € Ju, ¥(0,z)=y%=z)€ Jy, for z € R,

where Jy, Jy, Juw, Jy are open subintervals of R!. Next we solve (9) under
the initial condition defined above. For this purpose we introduce the following
assumption.

H.
() F € CY(Jy x Ju);

(ii) (L/C)[r?* - rF(p,q)] > 0 where LC > 0, (r,p,q) belongs to the bounded
domain @ C R! X R! x R defined as follows:

Q= {(T,P, q) ‘p€E va q€ J.'”’ r (S Jy},
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(iii) r[rI(r,p,q9) — K(7,p,q)] # 0 for (v,p,q) € Q.

In what follows it is assumed that H holds. Next we give a statement
which we need in the main result to prove the existence and uniqueness of the
simple state for (1).

Proposition 2. There ezists three dimensional distribution 6(z) in RS.

Proof. A most general approach for solving of (5) is based on the
representing of the considered system by Pfaff differential forms defined on RS.
Thus the system (9) reduces to the following Pfaff differential system

w!=du+ (K/L)dt — ydz =0
(10) w=dv-(F- y)C"‘di —Kdz =0
w? = dw — Mvdt — CMvK/(F — y)dz = 0.

Since the differential forms in (10) are linearly independent, we can define a
codistribution A(z) by the linear hull of the set {w'}3;; z = (¢,z,v,u,v,w) €
RS. Further one can choose the differential forms

@® = Kw! — yw?,
belonging to A(z), thus the system
@' =du+ (K/L)dt — ydz =0
(11) @? = CMvdv — (F — y)dw =0
@B =Kdu—ydv=0
is equivalent to the previous. It is easy to see that the vector fields
& = (0,0,1,0,0,0)
& =(0,K,0,yK,K? —LMyv)
& = (yL, K,0,0,0,0)
solve (11) in the sense that

@'(&) =0 (i=1,2,3; j=1,2,3).
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Hence there exists a three-dimensional distribution 6(z) defined as the linear
hull of & (i = 1,2, 3) since these vector fields are linearly independent. =}

The following statement is a generalization of those shown in [9].

Proposition 3. For k = 1,2,3 there exists exactly one (up to « scalar
multiplier) vector field 1 = i, satisfying the system
(12) () =0, 8¢, =0 (k=1,2,3; j=1,2,3).
Moreover, the rank of the system of vector fields {ijx} (k = 1,2,3) is equal two.

Proof. We look for the unknown vector fields 7 solving the systems
(12). In order to specify the above vector fields i (k = 1,2,3,4), we can use
the known classical formula
(13) w(X,Y) = Xw(Y) - Yw(X) -w([X,Y)),

where X, Y are some vector fields, [X,Y] stands for their comutator, and w is
a differential form. Next we define the following differential two-forms

0w = dy \ du! — dK A\ dud, w? = d(u?fi/u) Adt —d(fi/u*) \dz,
0w® = d(yu?) A dt — dy A\ dz, w* = d(v?f3) \dt — dfs \ dz,

and the commutators
[61,6) = K0z + (yKy + K)0y + 2K K, — LMvd,,
=(0,K,,0,yK, + K,2KK,,—~LMv) = 9,&3,
[61,83] = L + K0z = (L, K,,0,0,0,0) = &3,
[&2,&3) = (K%K, — LMyvK,,)0;
= (0, K?*K, — LMyvK,,0,0,0,0) = (K28, — LMyvd, ).

Thus, if we express i (k = 1,2,3) by 1 = a1 +ajéa+ajés (for allk =1, 2,3),
therefore the coefficients ai (k =1,2,3; j = 1,2,3) staying before the basis
vector fields §; (i = 1,2,3) can be calculated by the commutators defined above.
Hence, ‘

in = —y(K?Ky — LMyvK )6 + (yKy — K)é2 + K&
= (LyK, yKK,, —y(K*K, — LMyvK,,), yK, — K,
K*(yK, - K), LMyv(yK, — K)),
2 = & = (yL, K,0,0,0,0),
i3 = & = (yL, K,0,0,0,0).
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It is easily seen that the above stated set of three vector fields 7. (k = 1,2,3)
has rank two. This complete the proof. ]

Proposition 4. There exisls a lwo dimensional involulive subdistribu-
tion 0,(z) of 8(z) resolving the differential system (11).

Prool. Using Proposition 3, it casily follows that there exists the basis
{in,ip} determined by the vector fields ij; = ij; and 1 = ij; whose lincar hall
forms a two dimensional subdistribution 8;(z) of 6(z). On the other hand we
get

[ih,i) = —(K*K, — LMyvK,)(yL, K,0,0,0,0) = A(y, v, w)ijs,

where A(y,v,w) = —(K?K, — LMyvKk,). Consequently, 8, is involutive which
completes the proof. m

4. The main result
Our main result is based on the following statement.

Theorem 1. The system (9) possesses a unique simple state if and
only if there ezists two linearly independent involutive vector fields belonging to
0(z).

This is a particular case of the general Pfaff problem (cf. Schouten, van
der Kulk [7]). By this statement the considered initial problem reduces to the
problem of finding suitable vector fields belonging to 8(z) such that their linear
hull defines an involutive subdistribution 6,(z) of 8(z), i.e. 6;(z) C 6(z), and
such that by the system (2) we can get a solution of (9) hence (1) will be solved
as well.

Proof. Proposition 2 suggests us that in order to solve the system (10),
it suffices to find all two dimensional involutive subdistributions of 8(z). For
that purpose we fix some g # 0. Thus we have the initial data

y(0, z()) = yOO # 0, u(09 30) = uOO, 0(0, mO) = vOO’ w(01 xO) = w%

Having in mind Proposition 4, it follows that 8,(z) is involutive, and according
to Frobenius’ theorem, it is completely integrable, i.e. the system of linear first
order partial differential equations

ih ® = LyK)® + yK K&, — y(K?K, — LMyvK,)®,
(14) | +yK(yK, — K)®, + K*(yK, — K)®, — LMyv(yK, — K)®, =0
h®=yLd + K®, =0,
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has four functionally independent solutions. They can he obtained by solving
the system
dz/dt = K[Ly

dy/dt = (-K*K, + LMyvK,)/L(yK, — K)

(15) du/dt = K/L
dv/dt = [y — F(v,w)]C™1
dw/dt = Mv

under the same initial condition given above. Hence we obtain four integrals in
the implicit form

16 Pd.(t,z,y,u,v,w) =P, O,zo,yoo,uoo,voo,woo 7 =1,2,3,4).
J J

The system (16) yields four implicit functions y = y(t,2), v = u(t,2), v =
v(t,z), w = w(t,z) defined in some neighbourhood of the point (0, 2°). Thus we
conclude that (y(¢,z), u(t,z),v(t,z), w(t,z)) is the only solution for the system
(9) satisfying the initial condition given above. Consequently, the only simple
state to (1) exists in the implicit form

U= ’u,(t, 2:), = ’U(t, :c), w= ‘UJ(t,(lI),

and (0, 2) = u%(z), v(0,z) = v°(z), w(0,z) = w°(z). This completes the proof.
=
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