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In this paper we obtain some lower and upper bounds for the unique positive root of
n
the algebraic equation " —Za;t”" = 0. Two-sided methods for calculating of positive root of

=1
this equation are considered. Such results are important for the determination of the R-order
of convergence of iterative processes in numerical analysis, also in the financial mathematics.
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1. Introduction

Let IP denote an iterative process that produces a sequence of approxi-
mations {¢(¥)} with the limit point t*. For the errors
) = [ - 1,

it is often possible to derive a difference inequality like

n—1 3
(1) e+ <o H (e(""'))uwfl , 8,20, i=1,2,...,n, a>0, k>n—1.
=0 %
According to Schmidt [6], the recurrence (1) has the R-order of convergence
OR(IP,t*) of at least o, where o is the unique positive root of the equation
(2) pt):=t"-) ait" " =0, a;20,i=12,...,n
=1

Various estimations for o can be found in Herzberger [2], Kyurkchiev [4],

M. Petkovic and L. Petkovic [5]. In this paper we give another estimations.

1This work is partially supported by the Bulgarian Ministry of Education and Science,
under Contract MM-515/95
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The following theorem by Deutsch [1] is more often applicable: Let A =
(@ij) be a non-negative irreducible n X n matriz and let x = (¥1,23,...,2,)7T
and y = (y1,92,---,Yn)T be positive vectors satisfying

Ax = Dz,
ATy = Dy
Jor some posilive diagonal matriz
D = diag(dy,ds,...,dy,).
If « is not the Perron vector of A, then

n diziyi o
St 9T Do
(3) p(4)2 [T 4,7 2 L

=1

’

where p(A) is the spectral radius of the matriz A.

2. Main results

The first estimations for positive root o based on Deutsch’s theorem with
z = (1,1,...,1)7 can be found in [5]. We will use the same theorem for arbitrary
positive vector z.

- Theorem 1. For arbitrary positive 21,3, ..., Z,, for the positive root o
of the polynomial p(t) the following estimations hold:

n

n T s/ Ty ieizi > aiwilna;
(4) o> (E a;a:;) exp | — '.=1"

i=1 Z i(li(ﬂi

i=1
and n
Eia;m;
(5) o> —=
z: + thiaiwe
=2

where

-1

Th41 .
l‘":lcz—;_zk N 1=2,3,...,n-
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Proof. Let us associate with the polynomial p(t) the corresponding
madtrix

{al a az ... Qu-1 a,.\
1 0 0 ... O 0

0

I
<
—
(=
(=]

A

\0 0 0 ... 1 0 )

with det(A — tI) = (~1)"p(t). The matrix A is non-negative and irreducible.
By the Perron-Frobenius theorem, this implies that A has a positive eigenvalue
equal to its spectral radius p(A), i.e. p(A) = o. From the relation Az = Da we
find

1 Tpm
d = E‘Z;aixi’ di = ?‘l, k=2,3,...,n.
Then the system
(AT-D)yy=0
yields
n
n=1 gy = Zail'n k=2,3,...,n
Tk- =k
Now, we have
n
(6) yT Dz = z:ia,-a;,-,
i=1
n
(7 drary, = Ea;m;, k=1,2,...,n,
: =k
n
(8) vz =a1+ ) miaie.
=2

According to (7), we have
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n n n

n n Zﬂifi Eaizi Zaixe z
. . Ankn
STV cge. | i=1 1 )i=1 1 ) i=2 Tn-1
Hd:i - (Za'm') 1 z2 ! v Tn
=1 =
n
. i L asT;
. s
= (E a;:c.') =t (xl—,)
=1 =1

M:

n @iTi n
= (Za;zg) i=l . exp (— Za,-x;lna:,-) .

=1 i=1

From the last expression, (6) and from the left inequality in (3) we get (4). From
(6), (8) and inequality (3) we have (5). The proof is complete. .

3. Special choise of the parameters
The vector z = (fcl,zg,...,a:,,)T > 0 can be taken in arbitrary way.

First, if we choose z; = A', i =1,2,...,n, A > 0 we get the following result.

Theorem 2. For arbitrary positive A for the positive root o of the poly-
nomial p(t) the following estimations hold:

(9) o > 3(aM),
and

70
ey IO OESY

n
where ¢()\) = Ea.-,\".

=1

Proof. Substituting z; = M, i=1,2,...,n, for the first multiplier in
the right hand side of (4) we have

=1

DD aizi [t taizi .
) = q(A)'I(a\)/E?m fai\t _ q(,\)"('\)/"‘l'(-\)

and the second multiplier in the right hand side of (4) gets the form
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n n
Ea;xglnz,' Za,-)\"ilnz\

exp | -E—— | =exp | - =L = exp(=In)) = -,1( ;
Zia.-a:.' Zia,v\"
i.=l i=1
and so we get (9).
Analogously, substituting in (5) z; = A’ we find
Eia;z;
= I V') M V' )
n n "
. A
z; + Zp,-a,-:c,- A+ Z(t - 1)a,v\'+1 At (ﬂxl) A3
=2 =2
I V(¢ MY 70
¢ —gMA+ 2 ¢(MA-g(M)+ 1’
which gives estimation (10). The proof is complete. ]

Remark 1. We can prove that
(11) q (—) =1.

Evidently, .

n

= 1

0=p(a)=a"—z;a.-a" t=o" (l—q(;)) .

=
ie. ¢(L) =1, because o > 0. Using (11) we see that equality in (9) and (10)
is attained for A = % Consequently, if we choose A to be near ;}-, then the
estimations (9) and (10) will be more precisely.

We observe that in the case A = 1 the estimation (9) has the following

simple form

(12) ag 2 (i a;

=1

) Tie1 8/ XV dai

Let the coefficients of the polynomial p(t) be such that for ¢ = 4y,42,...,im,
a; > 0, and for ¢ # #1,42,...,%m, a; = 0. In that case we give another choise for

n
the values of z1,23,...,2, in (4), but in such manner that Ea,-:v; =H.

i=1
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Theorem 3. For the positive root o of the polynomial p(l) = (" —
m

Eu;k t"=i the following estimations hold:

k=1 "
m/ E ik RYDIEN
e=1

(13) a 2 m k=1 (ai] al2 -Gy, )

Proof. Let

Ty = ma'_v L= 014510250005

and 0 < z; be arbitrary for ¢ # il,iz,...,im.. The first multiplier in the right
hand side of (4) is equal to 1, and for the second one we have

n m
a;z;lnx; -‘-Eln ma; 1
; e ™ (mai,) In (m (@i @iy .. .a;,)w
= — )
exp| -—F—— | =exp| ——5—— | =exp —
. l .
S £ L
=1 k=1 k=1
"
m/ 3 ik 1/ 3 ik
=m k=1 (a;a...a;,) *=' .

In the special case m = 1, ¢y = k the estimation (13) can be rewritten as
1

o2>a;,
i.e. the equality in (13) is attained, because for p(t) = 1" — "% = 0 we have

o= “/. The proof is complete. @

Another special choose can be the following

vi—1
a‘k

a”l +a”2 +...4a Vm ?

'm

z;, = k=1,2,...,m,

where 0 < 2; are arbitrary for ¢ # i1,42,...,4n, and v, v, ..., Uy, are completely
n

arbitrary numbers. We see that the equality Za;m; = 1is true.

=1
Very often the following polynomial equations arise by the determination
of the rate of convergence of IP:

(14) p(t) = " - (p+ 1)2 Slm=i= 0, p>0, 7> 0.
i=1
There exist explicit upper and lower bounds for the positive root o of (14) (see

(2]):
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n
n+1

(15) (p+r+1)<o<p+r+1,
(p+ 1)

(p+ 17"
p+r+

(p+r+1)"

We observe that the coressponding polynomial ¢(A) to the equation (1) is of
the form

n
(16) p+r+1- O+%) <o<pirel-

a0 = PELS (a2 @EDA (g gy,
=1

1—-rM\o

¢(Xo) = 1 = (o)™ = 1. Then for the positive root of the equation (14) the
estimations (9) and (10) with A = Ag := ﬁ:ﬁ; can be rewritten respectively as

In spite of Remark 1, we find that for Ao := l—_'_’l,—_*-_;- such that XU — 1 and

1 n '/) ) 7 n 1/’)),!‘,!1
— — . pnn . . e ——
o2 (- = @rren (1- () )
where

1—(rAo)"
1— ()" — (n 4 1)(p+ 1)Ao(7M0)"

"/’p,r,n == (1 + 1’)’\0
and .
(,,.Au )ﬂ
= (rXo)"*! — n(p + 1)Ao(rAo)"

Comparing with (15) and (16), we see that the last estimations have a good
order of exactness.

02/\51—(1)+1)1

«

Remark 2. Several problems in the classical financial mathematics lead

to a class of polynomial equation [3],
n-1

P(z)=Ca"-) Bja" i —A=0
J=1

with only one single positive root (bound for the eflective rate of an annuity
with geometrically growing payments), where A is the purchase price of the
bond paid to the issuer; B; = B is a periodic payment paid according to the
contract rate of the bond; C = K + B, where K is the purchase rate of the bond
when sold at the bond market; n is the term of the bond (usually number of full
years or months).
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The explicit bounds for the unique positive root in the term of finance
can be obtained using the approach given in this paper.

4. Numerical methods for solving
the positive root of the equation (2)

From (11) we see that the equation F(t) := ¢(¢) — 1 = 0 has the unique
positive root equal to 1. Evidently for the function I'({) we have ') >

0, F"(t) > 0 for all positive ¢t. The estimations (9) and (10) gives the following
estimations for the positive zero of the equation F(t) = 0

(7) = < Mg,
1o, _an-1
s =TT

for every A > 0. Let mention that equality in (17) and (18) is attained for A = L
and

(18)

1 —gA) qg(\) -1
=< ) o N et
(19) 7 S AT <3 - L9
We define for arbitrary Ag > 0 the following iteration formulae
__a(ug)
(20) Hrtr = pr(g(pr)) #ea®n), k=0,1,2,..., po = Ag;
(21) ,\,ﬂ,l:,\k—ﬁ’(’\L)_—l :=0,1,2,....

(M)
We remarked that the iteration (21) is Newton’s formulae for the equation
¢(t) —1 = 0 and from the positivity of ¢’ and ¢” the iteration is convergent with
quadratically order for every initial point Ag > 0. Therefore, \; > Ag > --- > %,
i.e. the process is monotonical and one-sided.
Analogously for the iterations (20) the iteration function is of the form

8(t) := 1(¢(1))" " = texp (— M) .

tq'(t)
1 1
+(3)=7
L4 tq(t) + q(t) — tq'(2)
% tq'(t) In ¢(t).

We have

¢'(t) = q(t)”
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From the last equation we have ¢/(1) = 0, i.e. the iteration (20) has at least a
quadratical order of convergence. From (19) and from the strong increasing of
the function ,
L q(A) -1
yo & ,)
7'(})
for A > 1 we have
SwelA k=1,2,...

- Q=

Starting from 2o = yo < >, i.e. g(20) < 1 the following two-sided iteration
method can be constructed using procedures (20) or (21) with combination of
the following regula falsi iterations

Akt1 — Tk
22 z =ar— (g(zr) -1 0 =10, 14005y
(22) S v e Ml
or
Br+1 — Yk ‘
23 Ye+1 = Uk — (¢(yk) — 1)—"——F—, £=0,1,....
(23) += w = (d) ~ Vo Y =gty F= 00
The following relations hold: 1
xkswk-lv-ls-”s;S---S’\k+ls’\ka k=1,2,...
1 .
ykSﬂk+1S---S;S-.-Suk+1 <pky, kK=1,2,...
A;lg,\;;l5..._<_a5..._<_m;,115m;1, k=1,2,....

Pt SHpp S SoS LSy Sy k=12,

If we have that g(z¢) < 1, then from (22) and (23) we see that 2, and
yi for arbitrary k give lower bounds for 2. Respectively, ;- and o= are upper
bounds for o, where k is arbitrary. .

5. Numerical examples

For the zero o = 5.1 of the polynomial

p(t) = t® — 55 — 0.5t* — 0.05¢% — 0.005¢% — 0.0005¢ — 0.00005

from (12) we get the following bound: o > 5.555550:9000018 ~ 4 68. From (9)
and (10) with A = } we find respectively o > 5.0999797 and o > 5.0999592.
For the zero o =~ 1.992 of the polynomial

pW) =t -8 - tP -t PP —t-1
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from (9) and (10) with A = % we find respectively a > 1.9919508 and « >
1.9919355. ‘

For the same polynomial using iterations (21) and (22), we generate the
two-side method for dl which gives

Ao = 2o = 0.5 < 2; = 0.5020170202323 < (lr
< Az = 0.5020170552711 < Ay = 0.50202:1291198.
Using iterations (20) and (23) we generate another two-side method for

l and find
o

ko = Yo = 0.5 < y1 = 0.5020170430612 < % < pp = 0.5020204346287.

References

[1) E. D e u t s ¢ h. Lower bounds for the Perron root of a non-negative
irreducible matrix, Math. Proc. Cambridge Philos. Soc. 92 (1982), 19-54.

(21 J.Herzberger. Berechnung der Konvergenzordnung von Folgen bei
iterativen numerischen Prozesen, In: Wissenschaflliches Rechnen (hrsg.
von J. Herzberger), Akademie Verlag, Berlin (1995), 279-315.

[3] . Herzberger, K. Backhaus. Explicit bounds and approximations
for polynomial roots in mathematics of finance, In: Proc. of NMA 98, Solia,
1998 (in print).

[4) N.Kyurkchiev. Initial Approzimation and Root Finding Mctheds,
WILEY-VCH Verlag Berlin GmbII, Berlin Vol. 104, 1998.

[5] M.Petkovic,L.Petkovic. On the bounds of the R-order of some
iterative methods, ZAMM 69 (1989), 197-198.

[6] J.Schmid t. On the R-order of coupled sequences, Computing 26
(1981), 333-342.

Institute of Mathemalics and Informatics
Bulgarian Academy of Science Received: 15.10.1998
Sofia 1113, BULGARIA '



