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In this paper a Jackson-type estimation for the approximation of a monotone non-
decreasing funcion S by monotone nondecreasing splines with equally spaced knots in the
Lu[0,1]-norm (1 < p < o0) is obtained. The estimation involves the high order Sendov-Popov
averaged moduli of smoothness of the derivative of f and is obtained for function f with a
bounded and measurable derivative. The techniques of Chui, Smith and Ward are used. The
result is a generalization of the results in [2].
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1. Introduction

For 1 £ p < oo let L,[0,1] denote the space of measurable functions
whose p-th power is integrable and let Lo[0,1] denote the space of bounded
and measurable functions. Given f € L,[0,1], define its r-th L,-modulus of
smoothness by

wr(fy W)pto) = sup {107 o, fCMlptory 5 0 St < Y,

where

’ def (=D () f(r +it) if x,x+rt €[0,1];

A‘vlo-llf(w)' = { (?‘—0( : (‘)f( HE ¥ ol;her[wisj.

Let S(»,n)(r > 1) denote the space of all splines of order 7 on the n + 1
equally spaced knots {%}:;0, ie. s € S(r,n), if s is a polynomial of degree
< r— 1 in each interval [£, 1] and s("=2) is continuous in [0,1]. For r = 1, s
is a piecewise constant function without continuity at the knots.

If f € L,[0,1] is monotone nondecreasing, denote
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EY(f,7)pi00) €l g {Ilf = sllyo) 5 s € S(r,n), s nondecreasing } .

The following two theorems were proved by Leviatan-Mhaskar [2).

Theorem 1. If [ possesses a continuous nonncgalive derivative f' on
[0,1], then there is a constant ¢(r) depending only on r > 2 such thal

EXNJ,7)oofo) < c(r)n " wra (S, 2™ eof0,1] -

Theorem 2. Lot 1l < p < oo. If f is the second primitive of f” €
Ly[0,1] and f is nondccrcasing, then there is a constant ¢(r) depending only on
r > 3 such thal

BN Yo S e(r)n 2w 4, n7 o) -

For a function f bounded or [0,1] the Incal modulus of smoothness of
order r at the point x € [0, 1] is the function (see Delinition 1.4 of [3]):

’ . 0 %)
wr(f’ Ty 6) d=f sup {IAh,[O,l]f(t)l i Lt+ rh € [‘7' - '1:2—'33: + lé—] } .

For 1 < p < oo the r-th order averaged Sendov-Popov modulus of smoothness
of a function f bounded and measurable on [0,1]is (see Definition 1.5 of [3])

(/f, 6);1[0,1] dér ”w,-(f, i 6)"p[9.1] :

The following properties of . are used (sce Theorem 1.5 and Property
5 of [3]). Let 1 < p < oo and f is the primitive of f/ € L,[0,1], then there is a
constant ¢(r) which depends only on 7 > 2 such that

(1) (/, 6)p[u,1] < c(r)awr—l(fla5)p(0,l] .
Let f be measurable on [0, 1] and £ is integer. Then,
(2) 7 (fs k6)yio) < K (S, 8)p00)-

The main result of this paper is the following stronger estimation of the
best monotone spline approximation.
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Theorem 8. Letl < p < oo. If f is the primitive of a bounded and
measurable on [0,1] function f' and f is nondecreasing, then there is a constant
¢(r) which depends only of r > 2 such that

El(f’ r)p[O,l] < c(r)n-lrr—l(f" "—l)p[O,I] .

Remark 1. For p = oo Theorem 3 coincides with Theorem 1 because of
(/s 6)00[0.1] = w,(f, 5)00[0,1]

Remark 2. Theorem 2 follows from Theorem 3 because of (1).

In order to prove the main result we use some statements from [2].

Lemma 1. Let f be continuously differentiable on [-1,1] and nonde-

creasing there. Then there is nondecreasing polynomial P on [-1,1] of degree
< v (r 2 1) which interpolates [ at 0 and 1 and such that

IS = Plloof-1,1) < () wr(S's Doo[-1,1]-

This is Lemma 3.2(i) from [2]. \

Remark 3. This statement is valid for a nondecreasing function f which
is the primitive of a hounded and measurable function f/ (see the proof of Lemma
3.2(i) from [2]).

Lemma 2. Let f be a nondecreasing function which is the primitive
of a bounded and measurable on [—1,1] function f'. For r > 1 there exisls a
nondecreasing continuous function g on [-1,1] such that g interpolates f at -1,
0 and 1 and has the properties:

(¢) The restrictions of g to [—1,0] and [0, 1] are polynomials of deg < r;
(@) S = glloof-1,1 < e(r) wr(f's D) oo[-1,135

(i) Y 1g®O+) - g®H(0-)] < e(r) wr (S, ooer -

k=1

This is Theorem 3.1(i) from [2], according to Remark 3.

Lemma 3. let f be a nondecreasing function which is the primitive
of a bounded and measurable on [-2,2] function f' and.let g, and ¢, be the
pzecewzsc polynomials guaranteed by Lemma 2 for the intervals I = [-2,0)] and

= [0, 2], respectively. Then,

Zlg‘“(o+) #(0-)] < e(r) wr(F, Dooj-2,2) -
k=1.



422 P. E. Parvanov

This is Theorem 3.2(i) from [2], according to Remark 3.

The next lemma is similar to Lemma 2 and the proof runs along the lines
of that of Lemma 2.

Lemma 4. Let f be a nondecreasing function which is the primitive
of a bounded and measurable on [-m,l] (m and | natural) function f'. For
r > 1 there exists a nondecreasing continuous function g on [—m, 1] such that g
interpolates f at —m,0 and |l and has the properties:

(i) The restrictions of g to [—-m,0] and [0,!] are polynomials of deg < r;
(17) "f - g“oo[-m.l] < 0(7') wr’(fl’ l)oo[- max{m,!},max{m,I}])

r

(z") Z |g(k)(0+) - g(k)(o—)| < C(T) wr(f,a l)oo[— min{m,l},— min{m,l}]*
k=1 .

We use also the following fundamental lemma of Chui, Smith and Ward
(see [1]).

Lemma CSW. Letr > 2 and d = 4r% and let g be a nondecreasing
continuous function on [—3d,3d], the restriction of which to [-3d,0] and to

[0, 3d] polynomials of degree < v — 1. Then there is a nondecreasing spline s of
order v and knots at the integers such that

r—1
lls = gllp-ad,3a = I8 = gllp-a.q < e(r)D_ lg¥(0+) — g¥(0-)|.
k=1

2. Main result

Proof of Theorem 3. It suffices to prove the theorem for n > 12d,
where d = 4r2. Let F(t) = f (%), t € [0,n], and let m = 2 [&] (where [.]
denotes the integral part). Denote I; = [0,3d], I; = [3d,6d), ..., [,n—1 = [3(m —
2)d,3(m — 1)d] and I,, = [3(m — 1)d,n. By Lemma 2, for each pair of intervals
L1V, j =1,2,...,% —1, there exists a monotone nondecreasing continuous
function G; interpolating F at 6(j — 1)d, (65 — 3)d and 6jd, such that G; is a
polynomial of degree < r — 1 on Iz;—; and on I;. Also,

”F - GJ'"OO(I:;‘—:U[:,‘) < c(") wr—l(F,» l)w(lzj_lulgj)
and

r—1

3 I1GP((65 - 3)d+) = GP((67 = 3)d=)| < e(r) wr—1(F', ooty _sum,y)-
k=1
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Let us note that the constants in the inequalities are independent on the in-
tervals. We note also that the length of I,, may be > 3d. This is the reason
for the use of Lemma 4. By Lemma 4 for the last pair of intervals I,,—y U Iy,
there exists a monotone nondecreasing continuous function G inter polating F’
at 3(m — 2)d, 3(m — 1)d and n, such that G is a polynomial of degree < r-—1
on I,—1 and on I,. Also,

(3) IF = Glloo(tmorutm) < €(r) Wr—1(F's 1)oo(ln—z0lm-1Ulm)*
and
}
r—1 l t
@) Y16 (@3(m - 1)d+) - G (3(m — 1)d=)| < e(r) wr-1(F's Doo(lm-1tm)-
k=1

In the right hand side of (3) and (4) we use that 3d < n — 3(m — 1)d < 6d and
In—2 exists because m > 2 (n > 12d). '

Now by Lemma 3, we may define a continuous nondecreasing function
G =Gjon Lj_y Uy, j=1,2,..,% such that

(5) "F = G“OO‘([&,'_‘;“UIQJ') < C(’I‘) w"‘—l(F” 1)00(12,'_1U12,')a Jj< %‘1
1F = Glloo(tm—sUlm) < (1) Wre1(F's 1)oo(Ip-gUlm-1UIm)s I = T
and fori =1,2,...,m—-1
r—1
(6) Y l6W(3Bid+) - GW(3id-)| < e(r) we-a(F 1)oo(z.u1.+,)

=1
Applying Lemma CSW to each pair of intervals I; U4, we have a spline
S; on I; U I;4; such that S; = G outside [(3¢ — 1)d, (3 + 1)d] and by (6),
) 15: = Glloof@i=1)dy@i41)q) < €(r) Wr—1(F'y Doo(riufips)-

We define the spline

def [ Si(t) if te[(3i—-1)d,(3i+1)d], i=1,2,...,m~—1;
S(t) { G(t) . otherwise.

Now we let s(t) = S(nt), 0 <t < 1. Then s € §(r,n), s is monotone nonde-
creasing and using (5), (7) and (2), we obtain
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"f 8”’,[0 1] = -—l” ,1.' — ‘S'"p[O "] > (”1’ C'”p[() n] + “(l - AS'I ,,[0 ﬂ])

."_’_1 m-—1
(Z"P CI'" (121—1UI21)+ ”1 - G”P(’m—lUIm)+ Z“G S”l’(’lUIt+l))

Jj=1 i=1

m_y
2r H
< —¢(r) (Z / f—-l(l'—'l’l)oo(fzj—luhj)dt

j=1 Y h2j—1UL;

m=—1

+ -1(1 1)00([,"_.2UI,,,-1Ulm)dt + Z / :.’_1(1'1', 1)oo(liUI"+l)‘lt)
l+l

j A—_— Ulm i=1

21
g%;c(-r) (Z_: /I”_MJ ('t o(r))de + /m_lu (P )

oI wf—x(F','l;C(T))‘”)<—'C(7') _1(F, e(1)pjo,n)
i=1 i+1

= ¢(r) (n" Teea (s e(r)n o))" < o) (e(r)n ™ rema (Fs 0™ o)

Therefore,

1]

(2]

(3]

IS = sllpo,n < C(")"—l"'r—l(f'v n—l)p[o,l] .
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