Provided for non-commercial research and educational use.
Not for reproduction, distribution or commercial use.

Mathematica
Balkanica

Mathematical Society of South-Eastern Europe
A quarterly published by
the Bulgarian Academy of Sciences — National Committee for Mathematics

The attached copy is furnished for non-commercial research and education use only.
Authors are permitted to post this version of the article to their personal websites or
institutional repositories and to share with other researchers in the form of electronic
reprints.
Other uses, including reproduction and distribution, or selling or licensing copies, or
posting to third party websites are prohibited.

For further information on Mathematica Balkanica visit the website of the journal
http://www.mathbalkanica.info
or contact:
Mathematica Balkanica - Editorial Office;
Acad. G. Bonchev str., Bl. 25A, 1113 Sofia, Bulgaria
Phone: +359-2-979-6311, Fax: +359-2-870-7273,
E-mail: balmat@bas.bg




Mathemalica
~ Balkanica

New Series Vol. 14, 2000, Fasc. 1-2

Extension of Group-Valued Function
and Density of Sets in Topological Group

S.K. Kundu

Presented by P. Kenderov

1. Introduction

This paper is about the extension of a topological group-valued function
m : § — G satisfying some given conditions, where G and G are topological
groups - the former locally compact Hausdorff and the latter complete, com-
mutative, and normally preordered (see Def.2.2) and S is the o-ring generated
by compact subsets of G. We obtain an extensiion m* of m on P(G) - the
power class of G, and study the properties of m* which are in tune with the
order-structure of (. Certain real-valued functions J are associated with & in
a natural manner (see Th.2.3). We also study these functions.

In the concluding section we utilize m* and f to define density of set
in G. The notion of density of sets is rooted in the classical analysis. It has
been studied extensively in the context of metric space [2], measure space [7],
Romanovsky space [9] and topological group [6]. Bhakat and Kundu [1] have
considered the idea in a uniform space with respect to a positive outer measure
# which besides satisfying a number of conditions { [1], §2.8 }, has been made
to satisfy the Vitaly axiom and regularity conditions { [1], §§2.6 and 2.7 }.

We have made m* to satisfy the Vitali axiom which is an adaptation {rom
that in [1]. We have found a necessary and suflicient condition for the equality
D*(E,z) = D.(E,z) to hold, where £ C G, X € G.

In our work the order-structure of G plays a crucial role, and as such, we
have been based on [8] for some results and definitions which we mention in the
following section for ready reference.

2. Definitions and known results

A pre-order ' <’ on a set E is a reflexive and transitive relayion; if, in
addition ’ <’ is antisymmetric, it is called an order. A set E equipped with a
preorder (order) is called a preordered (ordered) set. We write b > « iff a < b.
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Let E be a preoredered set and F' C F; F'is called increasing or decraesing
according as (b > a,a € F) = b€ For (¢c<d,d€ F)= ce€ I. It is easy to
see that Uy Fy, a € T is increasing or decreasing for every a. The same is true
for N F,, a €T.

Given a set H C E, there exists a unique increasing set i(H) and a
unique decreasing set d(H) containing H. It is, in fact, the smallest increasing
or decreasing set containing H.

‘ An element z € i(H)[z € d(H)] iff it is possible to choose y € H such
that z > ylz < y].

Let E be a topological space equipped with a preorder; the preorder is
called closed if its graph in E? is a closed subset. In fact, if I is Hausdorff and
we define z < y iff z = y, then ' <’ is a closed preorder on E.

Theorem 2.1. {[8], Ch.1, Prop.1}. The preorder of a topological space
E is closed if and only if for every two points a,b € I such that ¢ < b is fulse, it
is possible to determine an increasing neighbourlhood V of 'a’ and a decreasing
neighbourhood W of 'V’ which are disjoint. If the preorder of E is closed, then
for every point a € E, the sets d(a) and i(a) are closed.

Theorem 2.2, {[8], Ch.1, Prop.2}. Every topological space E equipped
with a closed preorder is a Hausdorff space.

Definition 2.1. {[8], Ch.1, §2}. A topological space E is said to be
normally preordered if, for every two disjoint closed sets Fp and Fy of E, Fy
being decreasing and F increasing, there exists two disjoint open sets Ag D
Fy, Ay D F; such that Ag is decreasing and A; increasing.

Theorem 2.3. {[8], Ch.1, Th.1}. A topological space E cquipped
with a preorder is normally preordered, if and only if for every pair of disjoint
closed sets Fy and Fy of FE, Fy decreasing and [ increasing, there ezists on
E a continues, increasing real-valued function f such that f(z) = 0 for z €
Fo,f(z)=1forz € F; and0 < f(z) <1 forz € E.

Definition 2.2. Let F be a nonempty preordered set; F is called a
norma.lly preordered topological group if:

i) F is an additive topological equipped with a closed preorder;

ii) F is normally preordered; and

iii) for any pair of elements a,b € E(a < b) — (a + ¢ < b+ ¢) for every
ceE.

For instance, R™ is a normally preordered topological group, if one defines
the closed preorder as (z;) < (y) iff ¢; = ¥;, 1 < i < n. We call Et = {2 €
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E |z > 0} the positive cone of E; Et is called generating {[12], Ch. 12, §89,
p.96}, if every element s € E can be expressed as s = u — v, u,v € Et in at
least one way.

Thus, in view of Theorem 2.2, G is Hausdorff and the sets d(a) and i(a)
are closed sets because of Theorem 2.1, a € G. We note that d(0) = {z € G|z <

0}.

Lemma 2.1. Let D C G+ — {0} be a finite set; then i(D) is a closed
subset of G and i(D) N d(0) = 0,0 being the zero-element of G.

The proof is omitted.

Let £p(G) be the class of all continuous, increasing real-valued functions
f on G, relative to D, such that f(z) = 0if z € d(0), f(z) =1ifz € z(D) and
0 < f(z) < 1forall z € G. £p(G) is nonempty (see Theorem 2.3).

Lemma 2.2. Let U be an increasing (resp. decreasing) neighbourhood
of 0 in G; then for any z € G,z + U is an increasing (resp. decreasing) neigh-
bourhood of z. Further, A+U is an increasing (resp. decreasing) neighbourhood
of ACG.

The proof is omitted.

Lemma 2.3. Let decreasing neighbourhoods form a neighbourhood basis
at 0, and x5 € G*; then for any f € ¢p(G) and z; € G,

f(21+ 22) = f(z1) + f(22).

Proof. Choose € > 0 and decreasing neighbourhoods U, U; and U; of

such that
€

(2.1) [f(z1 + 22) — f(¥)]| < 3 whenever y € 21+ 22+ U,
(2.2) |f(z1) — f(¥)| < g whenever y € z; + Uy,
and ¢

(2.3) [f(z2) = f(¥)| < 3 whenever y € 29 + Us.

By Lemma 2.2, z3 + U, is a decreasing neighbourhood of z,, and since 0 < z5 €
x9 + Uj it follows that

(2.4) 0¢ 9 + Us.

Set W = UnNU;; then W is decreasing and since 2y < z1+22 €1+ 22+ W C
z1 + x2 + U it follows that @1 € 21 4+ z2 + U. Accordingly,

(1 +U)N(z14+22+U) #0.
Choose y € (z1 + U1) N (21 + 22 + U). Now
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f@r+22) = f(21) = f(@2)| < [f (2 +22) = FW)| +1f(9) = f(20)]

Hf(ea) ~ JOI+17O)] <
by (2.1)-(2.4). Since ¢ > 0 is arbitrary,
| F(@1+w2) = f(@1) + f(2). =
Corollary 2.1. Ifa,y,€ G, f € ép(QB), then
fz+y) = f(=)+ f(v).
Corollary 2.2. If Gt is generating, then
fle+y) = f@)+ f(y), =,yeGt, feép(G)
This follows from Lemma 2.3.

Corollary 2.3. If Gt is generating, then
fle—y) = f(z) - f(y), w,ye€G™, feip(G)

3. Extension of m

Let G be an additive locally compact Hausdor(l topological group, s be
the o-ring generated by the compact subsets of ¢ and K C S be the class of
open sets. For E C G, define

S(E)={F|ECF € K}.
Clearly, S(FE) is a directed set - Fy > F iff F; C F, where Fy, F; € S(E).
Let m : § — G be a monotone increasing function satisfying the following
conditions {[5], §2 }:
i) m(0) = 0;
ii) m(a + F) = m(a) + m(F) for every compact set F' [we write m(a) for
m({a})]

ili) Given a neighbourhood U of 0 and A € S, m(B) — m(A) € U whenever
BCAand B€S.

_Definition 3.1. {[10], §0.2} For any index set I,z : I — G and
y € G,y = Y, a; iff for every neighbourhood U of y there exists a finite set
J C I such that /is finiteand J C J/ C I = 3 ;2 € U.

Definition 3.2. {[11]} For any I C G we define



Extension of Group-Valued Function ... : 5

m*(E) = limm(D),D € S(E).
Since G is complete, the limit exists uniquely.

Definition 3.3. {[10], §2.1} A set I is m*-measurable iff £ C G and,
for every T C G,m*(T) = m*(1'N E) -+ M*(T \ E).

Let T'(m) denote the set of all m*-measurable sets.

Definition 3.4.  {[5], §3} Two sets E; and I, are m*-separated iff
Ey C G, E; C G and given any neighbourhood U of 0 there exist open sets A4,
and Az in S, A; D EjsupsetA; D E, such that m*(A4; U A;) € U.

Lemma 3.1. For any A € S,m*(A) = m(A4), and in particular,
m*(0) = 0. _

Proof. Let U be an arbitrary neighbourhood of 0 in G; choose sym-
metric neighbourhoods U; and U; of 0 such that U; + U, ¢ U. There exists
Dy € S(A) such that

m(D) € m*(A) + U;.
Whenever A C D C Dy. Further, in view of axiom (iii),
m(D) — m(A) € U,.
So, m*(A) — m(A) = m*(A) — m(D) + m(D) — m(A) € Uy + U, C U. Since G
is Hausdorft, it follows that
m*(A) = m(A)
and when A =0, m*(0) =0. -

Lemma 3.2. m* is monotone increasing on P(G).
Proof. Let E,I" € P(G) and E C I'; suppose m*(E) < m*(F) is false.
By Theorem 2.1, there exists an increasing neiglibourhood U of M*(E) and a
decreasing neighbourhood V' of m*(I") such that
(3.1) unv =0
However,
m*(E) =limm(D), D € S(E)
and
m*(F) =limm(D), D € S(F).
Accordingly, there exists D € S(E),D € S(F) such that

(3.2) m(D1) € U whenever E C Dy C 1:3
) m(D3) € V' whenever [I'C Dy C D.
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Since EC DyUD; c DNnD c D( orD)and DN D € S(E) it follows, in view
of (3.2), that m(Dy N D2) € U. Further, m being monotone, U increasing and
m(D3) > m(D2NDy) €U

=>m(D2)€U=>m(D2)€UnV. .
This contradicts (3.1). Hence the lemma is proved. =
Remark 3.2. ACG=>m*(4)>0.

Lemma 3.3. m* is countably subadditive on P(G).

Proof. Let {E,} C P(G) be an arbitrary sequence with E = J;—; E,.
Suppose
(o]
(3.3) m*(E) < 3" m*(E)
=1
is false. There exist, in view of Theorem 2.1, an increasing neighbourhood U of

m*(E) and a decreasing neighbourhood V of y = 372, m*(E;) such that
(3.4) unv =40.

Since

m*(E) = limm(D), D € S(E),
there exists Do € S(E) such that
(3.5) m(D) € U.

Whenever E C D C Do, D € S(E).
Further, there exists a posit%ve integer N such that

M*(Ey) <Y m*(E)€V,n2N.
i=1
This gives, as V is decreasing,
' m*(E,) € V,n > N.
Accordingly, there exists D* € S(Ey) such that
(3.6) m(D) € V.

Whenever E, C D C D*,n > N.
Choose open sets Dy, Dy € K such that

E C Dy C Dy
ILc Dy,Cc D*~

So,
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ECDiNDy CDgN D* C Dy

(3.7)
E,.CEcCDiynDy C Dy C D*.
Now
(3.8) m"‘(Dl n Dg) = m(D1 n Dz) evU
by (3.5), (3.7) and Lemma 3.1.
Also,
(3.9) m"(D1 n Dz) = m(D1 n Dg) eV

by (3.6) and (3.7). Therefore,
m"'(Dl n Dz) elinvVv

which contradicts (3.4).
This completes the proof. . u

Theorem 3.1. IfG is ordered, then m* is countably additive on T(m).

Proof of this, being routine, is omitted.

Theorem 3.2. Let G be such that the neighbourhood system 0 has a
countable base consisting of decreasing neighbourhoods whose intersection is {0}.
Then for any E €P(G) there exists D € S, EC D such that m(D) = m*(E).

Proof. Let {U,} be a countable base at 0 consisting of decreasing

neighbourhoods with
bigcap> U, = {0}. So, for every n, there exists F),, € S(E) such that m(E,) €
m*(E) + U,, whenever

ECE,CF, E,€S(E),n=12,....
Set

then D € S and e C D. Therefore,
m(E) < m(D) < m(E,) € m*(E)+U,, n=12,....
Since m*(E) + U, is decreasing by Lemma 2.2 fcr every n, it follows that
m(D) e m*(E)+ U,, n=12,....

Consequently,
m(D) - m*(E) € U,, n=12,...,

and as such
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m(D) —m*(E) € () Un = {0}.
n=1
Therefore, m(D) = m*(E). [

4. Density of sets

In this section we assume the following;:

i) The class of decreasing open neighbourhoods at 0 forms a neighbourhood
basis at 0;

ii) G is ordered and Gt is generating;
iii) m* satisfies the Vitali axiom which follows.

We consider the topological group G to be a uniform space (G,U), where
the uniformity 2/ is generated by sets of the form
Ry ={(z,y) e G X Gly—z € U},
U being an arbitrary neighbourhood of the identity element in G. Let V be a
base of U consisting of closed and symmetric members of /.

Definition 4.1.  {[1], Def.2.1} Let A C G; if AXx A C U for some
U €V, we say that the diameter of A is less than U and write §(4) < U.

Definition 4.2. {[1], Def.2.2} Let {A,,« € T, >} be a net of subset of
G; if for every U € V there exists ag € I' such that §(Ay) < U forall « € T, o >
o, we say that the diameter of A, tends to zero and write §(4,) — 0.

Definition 4.3. {[1], Def.2.3} A net {Aq, @ € 7,>} of subsets of G is
said to converge to 2-€ G, if z € [, Ay and §(A,) — 0.
Definition 4.4. {[1], Def.2.4} For every V € V and 2 € G we define
Vi={yeGl(y,x) eV}
and call V* a closed ball with center z and radivs V.
Let U,V € V; we define U > V iff U C V. 1t is easy to check that (V, >)
is a directed set. For Vp € V, we write
V(Vo) ={V € V|V C %}.

Definition 4.5. {[1], Def.2.5} Let £ C U and let F be a family of
closed balls of G. We say that F covers I in the sense of Vitali, if for every
z € F there is a net {F,},a € T of closed balls such that F, — z.
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Vitali axiom. {[1], §2.6} Let F be a family of closed balls in G which
covers E C G in the sense of Vitali; then for every neighbourhood U of 0 in G
there is a countable family of pairwise disjoint closed balls {F;} C F such that

i m*(F;) +m*(E) e U.

=1

Theorem 4.1. Let E C G and F be a family of closed balls in G which
covers E in the sense of Vitali. Then for a neighbourhood U of 0 in G there is
a finite family of pairwise disjoint closed balls {Fj, : 1 < i < n} in F such that

3 me(Fy) + m*(E) € U.

=1
Proof. Choose neighbourhoods V;,1 < i < 3 of 0 such that
3
(4.1) d vicu.
=1

By the Vitali axiom, there exists a countable family of pairwise disjoint closed
balls {F;},i=1,2,3,... such that

o3
(4.2) > m*(F) + m*(E) € .

=1
Let y = 32, m*(F;); then for V; there exists [cf. Def.3.1] a finite set J C N
such that J/ is finite, and

-
(4.3) JCIICN =Y m"(F,)€y+Vs,
i=1
where we suppose J/ = {J;]i = 1,2,...7} and N is the set of natural numbers.
Choose decreasing open neighbourhood W;,1 < ¢ < r such that

(4.4) D WieVs.
i=1
Now,
m*(ENF;;) <m*(Fji) e m"(Fji)+-W;,, 1<i<r,
by Lemma 3.2; however m*(F'ji) + W; 1<i<rare decreasing (cf. Lemma
2.2) and so,
m*(ENF;)—-m"(F;)eW;, 1<i<r,

Summing over ¢, we get
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im'(Eﬂ Fj) € im*(ﬂ,)il"’, Cc-m*(E)+U,

i=1 i=1 =1
by using (4.1)-(4.4). Therefore,
T
Z m*(E N Fj;) +m*(E) C U.
=1
This proves the theorem. ]
Definition 4.6.  {[1], Def4.1} Let E C G, c€ G, V € V and
f € &p(G). Write A(z,v) = {W=|W € V(v)}. Define
D*(E,z;v) = sup { Jlm™(E 0 W) wW? e A(a:,v)}

] flm*(W*)]
D.(E,z;v) = inf { f[f;l[;(f(gv?),]‘)] W? e A(z,v)
[If flm*(W*)] =0, we takel [’f"[n(f"(;‘v“)’])] = o] .
Also, define
D*(E,z)=inf{D*(E,z;V) | VeV
and

D.(E,z)=sup{D*(E,z;V) | V eV.

D*(E,z) and D.(FE,z) are called respectively the upper and lower density of F

at z.
It is clear that

0< D.(B,z)< D*(E,z)< 1.

If D.(E,z) = D*(E,z) = 1, then 2 is called density point of E; on the
other hand, if D.(E,z)= D*(E,z) =0, z is called a dispersion point of E.

Theorem 4.2.  The functions D.(E,x) and D*(E,z) are monotone
increasing and finitely subadditive for any fixred v € G and E C G.

Proof. Let E,FF C G, FE C F and 2 € G. Since m* is monotone
increasing, m*(E N W?=) < m*(FNW?*),W* € A(z,v),V € V. Consequently,

fim*(EnW*)] _ flm*(FOWw*)]
< < D* :
W] = flmeqey < D7)

for every V € V, f € £p(G), and hence
D*(E,z;v) < D*(F,z;v)

for every V € V. This gives
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D*(E,z) < D*(F,z).

Likewise,
D.(E,z) < D.(F,z).

Further, m* is subadditive and so,

F[m*(E U F)nW?] < flm*(EN W)+ flm*(F nW?)],

by Corollary 2.2, E,F C G, W? € A(z,v), V e V.
It follows, taking sup over W* € A(z,v), that
D*(E U F,z;v) < D*(E,z;v)+ D*(F,z;v), V €V.
This leads to
D*(EU F,z) < D*(E,z)+ D*(I,z),

on taking inf over V € V.
Similarly,

D.(EUF,2) < D.(E,z)+ D*(F,z).
This proves the theorem. ]
Lemma 4.1. Let V1,V € V and Vi C Vy; then
i) D*(E,z;v1) < D*(E,z;v)
i) D.(E,z;v1) < D.(E,z;v2)
foranyz € G and EC G.
The proof is omitted.

Theorem 4.3. A necessary and sufficient condition that D*(E,z) =
D,.(E,z) for any x € G and E C G is that given € > 0 there exists W in V such
that '

D*(E,z;W) - D.(E,z;W) < €.

Proof. Sufficiency: Let the condition hold. Then,

D*(E,z) < D*(E,z;W) < D (E,z;W)+ € < Du(E,z)+ €

= 0< D*(E,2)— D.(L,z)< e
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Since ¢ is arbitrary,
D*(E,z) = D.(E,z).
Necessity: Choose € > 0, and suppose that D*(E,z) = D,(E,2). There
exists V3, V5 € V such that
D*(E,z)+¢/2 > D*(E,2;V1),
D.(E,z)—€/2 < D.(E,z;V2),

choose W CcVinV,,, WeV.
By the preceding lemma,

D*(E,z)+¢/2> D*(E,z;V1) > D*(E,z; W),
D.(E,z)—€/2 < D«(E,2;V2) < D*(E,z;W).

Therefore,
D.(E,z)—€¢/2 < D.(E,z;W) < D*(E,2;W) < D*(E,2) + ¢/2

=> D*(E,z; W) — D(E,=;W) < e.
This completes the proof. m

Lemma 4.2. Let ECG,z€Gand0< A< 1. If D.(E,z) < ], then
there is a net {F{; |V € V(Vo)} of closed balls with centre x which converges to
z, and

flm*(E 0 Fp)] < A flm*(Fy)]

for all V € V(Vy), where V, is a ﬁ:bed member of V.
Proof. Choose U € V; then there exists Vo € V such that Vo - Vo Cc U
{[4], Ch.6, Th.2}. Take V € V;; consequently, _ .

D.(E,z;V) < DJ(E,z) < A.
So, there exist closed balls FZ € A(z,V),V € V with z as centre such that
fIm*(E N Fg)] < X fl[m*(FF)).

Now we consider the net of the closed balles {FZ} each with centre z and
V € V(Vo). This net has the desired property. For, F§ C V= = Fy x Fg C
VxexVECV-vCV-VoCU, and so,

§(Fp)< U
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and z € Fy;.
This proves the lemma. [

Lemma 4.3. Let ECG,z2€Gand0< A< 1. If D*(E,2)> A, then
there is a net {I'; |V € V(Vu)} of closed balls with centre a which converges to
z, and

flm™(E 0 FY)] > Af[m*(F7)]

for all V € V(Vyp), where Vg is a fized member of V.

The proof is identical to that of Lemma 4.1.

Theorem 4.4. Let E C G, then almost all points of F are density
points of E.

Proof. Let W be an arbitrary neighbourhood of 0 in G; choose a neigh-
bourhood V of 0 such that '

V-VeW
Choose a decreasing neighbourhood U of 0 such that
ucv.

Let {A,} be a sequence of positive real numbers such that A, — 1 as n — oo.
Set ‘

Apn={2 € E|D.(E,z)< \p},

and choose z € A,; in view of Lemma 4.2, there exsists a net of closed balls
{Fg|V € V(V)} with centre  which converges to 2. We, therefore, obtain
a family of closed balls {F{}, V € V(V,) corresponding to all points z € A,
which covers A,, in the sensen of vitali. Accordingly, by theorem 4.1 there exists
a finite pairwise disjoint sequence of closed bals

{Fp, F2,.. .Fgr} C{F¥}, w2 €4, 1<i<n
such that "
3 mt(FE) +m*(An) € U
i=1
and as such n
S m* (A N FE) — m*(An) € U.

i=1

For some u;,uy € U we obtain, therefore,

(4.5) Z m*(Iy)'= —m*(Ay) -+ w

i=1
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(4.6) 2": m*(An N FZ) = m*(An) + u2.

=1

Because of monotonicity of m* we have from (4.5) and (4.6)

m*(An)=uz = Y m(AnNFF) <Y m*(Fy) = —m*(4x) + m
=1 i=1
=> m*(4n) < 2m*(An) < u1 — ug
=> m*(A4,)€EU-UCV-VCW.

Since G is Hausdorff, it follows that
m*(A,) = 0.

If A is the set of points in E at which the lower density is less than unity, then
oo
A= An.
n=1

m*(A) < 352, m*(An)
=> m*(4)<0
=> m*(A)=".

So,

This proves the theorem. ™~

Theorem 4.5. Let Ey and E, be two subsets of G, then almost all
points of E, are dispersition points of Ey and vice versa.

Proof. Let W be an arbitrary neighbourhood of 0 in G; choose a de-
creasing neighbourhood U of 0 such that U + U C W.

Let

An= {2 € B| D(Br2)> 7, n=12,....

If z € A, then by Lemma 4.3, there exists a net of closed balls {F% |V € V(Vo)}
with centre £ which converges to z. Consequently, we obtain, as we did in the
proof of the last theorem, a finite sequence of pairwise disjoint closed balls

{Fy}, F2,.. . Fyt} C {Fy}, =zi,z€A,, 1<i<n
such that "
Zm'(F{;}‘)+m‘(A,,) evU

and so =1
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D m*(An N Fy) - m*(A,) € UL

=1
Proceeding analogously as in the proof of the preceding theorem, we obtain
m*(4,)=0
for every n.
Let
A = {z € E;| D*(Ey,z) > 0}.
Then
A=U5L, 4An
= m*(A) < 3oL, m*(An) =0 [Lemma 3.2]
= m*(4)=0.

Therefore, the upper density of E, is zero almost everywhere in Ej; accordingly,
lower density of E; is also zero almost everywhere in E3. So, almost all points
of E; are dispersion points of E;. Similarly, one can show that almost all points
of E, are dispersion points of E2. This proves the theorem. ]

Theorem 4.6. Let E C G be arbitrary; then almost all points of G are
. either density points or dispersion points of E.
Proof. Suppose E; C E is the set of density points of E; by Theorem
4.4, m*(e\ E;) = 0. If E; C E° be the set of dispersion points of E, then
because of Theorem 4.5,
m*(E°\ E;) = 0.
Therefore,

G=FUE°® = E1U(E\E1)U(EC\E2)UE2
= E1UE2U(E\E1)U(EC\E2),

where m* ((E \ Ey) U (E°\ E;)) — 0 and E; U E; is the set of either a density
or a dispersion point. Hence the theorem is proved. ]
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