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In this paper methods for simultaneous finding all roots of generalized polynomials are
developed. These methods are related to the case when the roots are multiple. They possess
cubic rate of convergence and they are as labour-consuming as the known methods related to
the case of polynomials with simple roots only.
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1. Introduction

After 1960 the question of simultaneous finding all roots (SFAR) of poly-
nomials became very actual and it is considered by many authors. The reason
of this interest is the better behaviour of the methods for SFAR with respect
to the methods for individual search of the roots. Also these methods are very
convenient for application on the computers with parallel processors. Methods
for SFAR have a wider region of convergence and they are more stable. In
several survey publications [1,2,3] this question is considered in details. The
first methods for SFAR are related to the case when the roots are simple. The
well-known method of Dochev [4] is for SFAR of algebraic polynomial with
real and simple roots. The developments of this same method for the case of
nonalgebraic polynomials (trigonometric, exponential and generalized) are per-
formed in [5,6,7]. The classical method of Obreshkoff-Ehrlich [8] possessing cubic
rate of convergence is also generalized [9]. Using the approach base on the di-
vided differences with multiple knots, Semerdzhiev [10] generalized the method
of Dochev to the case when the roots have arbitrary, but given multiplicities.
The same question for the case of trigonometric and exponential polynomials is
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solved in [11,3]. The new methods preserve their quadratic rate of convergence.
The method of Obreshkoff-Ehrlich is also generalized to the most general case
[12,3] of polynomials upon some Chebyshev system, having multiple roots with
given multiplicities. The rate of convergence is cubic but, unfortunately, this
generalization requires at each iteration to calculate determinants which is a
labour-consuming operation.

In this paper we develop a new method which is a generalization of

the Obreshkoff-Ehrlich method for the cases of algebraic, trigonometric and
exponential polynomials. This method has a cubic rate of convergence. It is
efficient from the computational point of view and can be used for SFAR if the
roots have known multiplicities. This new method in spite of the arbitrariness
of multiplicities is of the same complexity as the methods for SFAR of simple
roots. We do not use divided differences with multiple knots and this fact does
not lead to calculation of derivatives of the given polynomial of higher order,
but only of first ones. The results of this paper are published in shortened form
as a preliminary communication in [13].
2. Algebraic polynomials

Let the algebraic polynomial
Ap(z) =2+ a12™" 1 + ...+ ap (1)

be given and let z1, 3, ..., 2y, be its roots with given multiplicities a1, az, ...,an
respectively, (a1 + @2 + ... + @y = n). For SFAR of (1) the Ehrlich formula

A1 2L g, (o) [A;, COPNED i (=1 _mﬁ-kl)-l] “‘,

J=1,j#1
i=T,n,k=0,1,2,.., (2)
is well known. Formula (2) can be written in the form

2+ = g ( zyel) [ A, ( zEk]) g (zgk]) o (wf-k]) [2 Q™ (xEk])]—l]‘l,

i=T,n,k=0,1,2,.., (3)

where

QM (z) = f[ (:c - zg"l) . (4)
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We define
e ) 4 ) ) 0 )
i=1,m,k=0,1,2..
where
M@= I («-a)"". (©)
J=1,J#1

Theorem 1. Letgq,c and d def min;x; |z; — «;| be real constants such
that the following inequalities

1>¢>0, ¢>0, d—2c>0,
1 (7)

0<e2(n—-38)+(n+@Bd-—1)a;)c< d?e; i=1,m

[0]

of (1) are chosen so that the inequalities |x[ ] —z;

then for every natural k the inequalities

are satisfied. If the initial approzimations ] {O] to the ezact roots z1,...,xm

<e¢q, t=1,m hold true,

¥ — 2| < e, i=Tm )

also hold true.

Proof. We prove Theorem 1 by means of induction with respect to the
number of the iterations. From the assumptions, we have that (8) are fulfiled
for k = 0. Suppose that (8) hold true for some k > 0.

From (5) we obtain, for i = 1,m,

) gy = o o, — g [ (o) /4 (59) — @2 (o) /@1 (o9)] -1
9)

Using the representation
,m( [k]) /o (zgk]) _ f: i/ (w__mgk]) i=Tm,

from (9) we receive (i = 1,m)

-z = :vs-k] - T — zm:aj/ (a;E-k] - :vj) - f: aj/ (z{-k] - zgk])

i=1 i=1, g

mgkﬂ]
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Further transformations lead to

:cgk“] —-x; = (a:[k] -z ) [1 - o; [ (z[k] -z ) Z aJ (m, w[k])
[ 5) (-] ] = () o (=) 0
< B el A [(-m) (-]

J=1,j#i
" :'=1i;¢e % (z’ - ”[k]) [(’”E'k] - -’":‘) (“’Ek] - “’5‘”)] B , i=1,m.

Obviously, we have
|a:[. —2; | > |zi — 25| — Ix,—zwl >d-cq® s d- c, i,j=1,m, i #3j. (11)

On the other hand,

|a:£~’°] _Z‘E'kll > |$E-k] z; I |:t —x["ll >d- 2cq >d—2c¢, i,j=1,m, i#j.
Using (10)-(12) we find as a final result, (12)
o+ — | < [ - s [ [~ [ — =4 3 -
J=1,j#i

o R o [

J=1,3%#1

-1
m m

<@ (@) ai—c 3 ald-a@-200" Y ajl@-c)@d-20)
J=1,j#i J=1,j#i
= e [ai — c(n = ) (@~ ) (@~ 200 ™"] " (n - @0} [(d - €) (d - 26)]

3k+1 —

< cq . =1m
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which proves the theorem completely.

Proposition 1.

corelations

@ (&) @™ (o14) = 20 (s) /09 (), =T

hold true.

In the case when ay = a3 = ... = ap =

21

1, the

(13)

Proof. In this case (6) reduces to (4) and we have

Q[k] (z) = QEk] (z) (a: - :vE-k]) , 1=

Differentiating (14), we obtain

" (@ =@ (@) (2 -al) + QM ()

Q"™ (2) = Q™ (2) (z - sM¥) +2@ (2), i=T;m.

From (15) we receive (13).
Proposition 1 shows that method (5) coincides with the method (3) and
consequently with the method of Ehrlich in the case when o; =1, i = 1, m.
Example 1. For the equation Ag(z) = (z 4 2)*(z —1)(z —3)> = 0 at
the initial approximations a:gol = -3, :1:20 = 0.1 and :v30 = 4 using the formula
(5), we receive the roots with 18 decimal digits after only 4 iterations.

(14)

, M.

(15)

% 2T Y 2

0 | —3.00000000000000000 | 0.10000000000000000 | 4.00000000000000000
1 | —1.99942363112391931 | 1.03532819268537456 | 3.03985932004689332
2 | —2.00000000143304088 | 0.999961906975802837 | 2.99999539984403290
3 | —2.00000000000000000 | 1.00000000000000501 | 3.00000000000000007
4 [ —2.00000000000000000 | 1.00000000000000000 | 3.00000000000000000

3. Trigonometric Polynomials

For the trigonometric polynomial

Tn(z) = ao/2 + Zn: (ag cos (Iz) + by sin (Iz))

=1
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we suppose that at least one of the leading coefficients a,, and b, is not zero and
that it has real roots z1, ..., Z,, With given multiplicities e, g, ..., ay (@14 a2+...
+a,, = 2n). Analoguously to (5), we can use the iteration method

N PN O ( [kl) [T:( [kl) T, ( [k]) K (mgkl) /QW¥ (xycl)]*l

(16)

m
=1,m, k=0,1,2,..., where QE-k] (z) = H sin®J ((m - a:_[,-k]) /2) .
J#i, =1

Formula (16) for @3 = a3 = ... = a,, = 1 coincides with the analogue of
the Obreshkoff-Ehrlich formula [9] for trigonometric polynomials.

Theorem 2. Let us denote d = min;z; |z; — zj|. Let c, q and £ be
positive real numbers so that ¢ < 1, 2¢ < €, d — 2¢ > 0 and max;y; |v; — zj| <
21 — 2€. Denote the expression min {|sin £/2| , |sin(d/2 — ¢)|} by A. If 2 (4n+
[0]

a; (9A%/8 — 2)) < A%a;, i = 1,m and initial approzimations z;", i = 1,m are
chosen so that x[ ] = x,-l < cq, i = 1,m, then for every natural k the inequalities

IZE 1_ a:,-l < cq , 1 =1, m also hold true.

Proof. We divide the numerator and denominator of second summa,nd
in the right side of (16) by T}, (m[k]) and obtain (i = 1,m)

—ai= zE"] Czi—a [T,i (xgk]) /Tn (zf."]) _ Q:_(kl ($£k]) /QEk] (xEk])] -1 s
(17)

2+l

On the other hand, we have

T (:::Ek]) i (:z:f-k]) =9t g ajcotg ((z[k] - :cj) /2) , t=1,m (18)
and

r("l ( [k]) /Q[k] ( ikl) — 9-1 E ajcotg (( (k] _ Bk]) /2) . i=T,m.
i=1, j#i
(19)
Using (18) and (19), we transform (17) into the form (¢ = 1,m):

:c,[-k“] —z; = :vf-k] -z — 2a,~[§:ajcotg ((z?‘] - a:j) /2)

j=1
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m

- Z a,cotg(( . [k]) /2)]_1. (20)

Jj=1, j#i

If we multiply the numerator a.nd denominator of the second summand
in the right side of (20) with sin ((a: -z ) /2) then we obtain

2 _ o = ol — o, — 20y i cos (o - 2.) /2) +sin (a1 - 2:) /2)

X Z  [cote (e — 25) /2) - cotg (=1 - 1) /2)] ]_lsin ((s¥ - =) 12)

= (¥ - 2.) [ (cos ((s¥ - 2:) /2) - 2 (ol - 2:) ~ gin (=¥ - =) /2))
o S O R (G0

x [ascos (o = 27) /2) +sin ( (= - ) /2)
x> o [eotg (a1 - 25) /2) —cotg ((oF - 2) 2)]] 7 i =T,

=1, i

3

Further, the difference [cotg (( (W _ :c,) /2) cotg (( 4 _ [k]) /2)]

can be transformated as follows (i,j = I,m,i # j):

cotg ( (ol ) /2)  cotg ( (= -~ 2 /2) = [sn (11 - 5;) /2)

cin () 2) 7 o (1 5) 1) (09 )
oo (e o8 2) i (1 5) )]

= sin ((2; - 21) /2) [sin (=1 - 2;) /2) sin (= - ) /2)]_1 :
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Consequently, for the deviation of zEk'H] from z;, we receive the expres-

sion

2l gy = [o [ (28 - @) cos (¥ - z:) /2) - 2sin (o} - 2:) /2)]
(8 () o (92 2) 3 ()] e
v (o8) = sin (a1 - ;) /2) ajsin ((z; - 21) /2)

) I
x[sin ((z -z )/2) sm((a:E-k]—a:g-k]) /2)]_1, i=1,m.

In order to ﬁnd an estimate for the expressions

(11— 2:) cos (o~ 21) /2) —25in (el =) 2) , i =T

we consider the auxiliary function F(z) = @ cos(z/2) — 2sin(z/2) and its
MacLaurent expansion, until the remainder term with third derivative of F'(z).

In this way we obtain |
(1= - (e () + () 0 () (e s
(M =6l (¥ -i) o<t <1, i= Tm)
and, therefore, the following estimate (i = I, m)
|F (s - z)l < (1/12 + 27/48) lmE"l = :c,'ls < |z£"1 - z,-la /4 < |z£"1 g m.-r’ .

On the other hand, the inequalities (11) and (12) hold true. Because of
the fact that all the roots are in an interval with a length 27, i.e. |z; — ;| <
2r, i,j = 1,m,i # j, it exists a positive number £ such that |z — z;] <
2% — 25, i,7 =1, m, i # j. We now obtain the inequalities

o — 24| < [al - aif #[o1 — o5 +1mi - 2] < 2726 4200”55 = Tm,i £ 5,

I:cgk] |<|[]—a:|+|:c—m,l,z,]_l,m,i;éj.
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From the suppositions of the theorem, it follows that 2¢ < £. Then

ol — ol <2m—¢, iyj=Tm, i#3
m{.kl_xj|<zw-2§+§/2<2w—e, i,j=Tm, i#3j.
Consequenly, d/2 — ¢ < eF g /2 <m—=€/2,4)j=1m, i #]
1 J
and d/2 — c<|[k] [k]/2<7r £/2, 4,5 = 1,m, i # j. It is easy to

sin (( (] _ [k]) /2)| and lsin ((m[ H_ g ) /2)| are

greater than A, A et min {|sin (£/2)|, |sin (d/2 — ¢)|}. From (21) we estimate

the absolute value of wEk'H]

|$Ek+1] o wel < [ai mgk] = 93:"3/4 + IwE"’ - zil Z.[k] (‘”Ek])]

e oo (92 1) - 2 ()

m

() <o (=) )] 55 b (=)
=1, i

 [on (81-) ) i (89 )=

Because of the presentation sin ((a:[ H_ g ) / 2) = ((:v[k] -z ) / 2) cos c[ ],

~ find that both expressions

—z;, t=1,m,ie.

i = 1, m, where c["]—o["] “ —-xz;)/2), 0<0[k]<1 i = 1, m, the esti- -

mates |sm (( (| _ )/2)| <z | - l/2 i=1,m hold true. Then from
* (22), we obtain :

|m5k+1] _ xil < (q3k)3 [a;+A—2 i aj]

=L

-1
K a|cos(( )/2)| (¢/A)? E aj] , i=1,m.

=1, ji
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From the inequality I(mEk] - :z:,-) /2' <e¢/2,i=1,m and the presentation
3 3 2 —_

cos :cE” -z /2) =1-(1/8) (a:E-"] - :v,-) cos C}k] ,t = 1,m, it follows that

lcos ((a:,[-k] - .1:;) /2)' >1-—c2?/8, i =1,m for sufficiently small c. Finally, we

receive o1
|:c£k+1] - a:;l <ecg® [a,- + (2n — a;) /A2]

3k+1 [r—

X [a; (1- c2/8) -(2n - ;) (c/A)z] - <eq® T, i=1m

for a small enough c. Thus the theorem is proved completely. n
Example 2. For the trigonometric polynomial

Ts (z) = sin® ((z — 1) /2)sin? ((z — 2) /2) sin ((z — 2.5) /2)

at initial approximations a:go] =0.2, a;[2°] = 1.7 and xf,f’] = 3, we reach the roots

of T3 () with an accuracy of 18 digits at the 5th iteration.

) o1 T
0.200000000000000000 | 1.70000000000000000 | 3.00000000000000000
1.08093197781206681 | 2.13081574593339511 | 2.68530050098035859
0.999087999636487434 | 1.98917328088624173 | 2.46587439388854078
1.00000001182848523 | 2.00000867262537340 | 2.50012119040535689 |
1.00000000000000000 | 1.99999999999998133 | 2.49999999999881136

1.00000000000000000 | 2.00000000000000000 | 2.50000000000000000

QU | W N =] &

4. Exponential polynomials

Let us now consider the polynomial

n n
E,(z)=ao/2+ Y (arch (Iz) + bish (Iz)) = ao/2+ ) (al,tf"" + b/,z-'z) . (23)
=1 =1
We suppose that at least one of the leading coefficients a,, or b, is not
zero and that E, (z) has real roots x1,22,...,2,;, with known multiplicities
a1,Q2,...,a,m (a1 + az+ ...+ a, = 2n), correspondingly. The roots of (23)
can be refined simultaneously by the help of the computational scheme

o = oM 0,5, (o) [ (s¥) - Ba (21) @2 (210) /@M ()] =
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i=1,m, k=0,1,2,..., where

m
ng] ()= H sh®J ((m - :L'E-k]) /2) .
J#i, =1
Theorem 3. Denote min;z; |z; — x| by d. Let ¢ and c be real numbers
such thatl > q >0, ¢ >0, d—2¢> 0, ¢® (4n + (5% - 2) ;) < S%a;, i=1,m,
where the ezpression sh((d — 2¢) /2) is denoted by S. If the initial approzima-
tions a:go] , 1 = 1, m are taken such that :1:50] - :v,-l < ¢q, i = 1,m, then for

every k € N the inequalities |a:£k] - :z:.'l <cg®,i=T,m hold true.

The proof of Theorem 3 can be carried out by the similar manner as in
Theorem 2 with corresponding changes, related to the properties of the hyper-
bolic functions.

Example 3. The iteration method (24) was applied for SFAR of the
exponential polynomial E;(z) = sh?((z + 2) /2)sh?((z — 3) /2). Using initial

approximations x[10] = —1 and xg)] = 4, by formula (24) we receive the roots
with 18 decimal digits after only 4 iterations.

: e I

0 [ —1.00000000000000000 | 4.00000000000000000

1 | —1.93448948248966207 | 3.07207901269406155

2 | —1.99997875689833755 | 3.00002895806496640

3 | —1.99999999999999929 | 3.00000000000000190

4 | —2.00000000000000000 | 3.00000000000000000
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