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In this paper we consider the class Qn,c(a) consisting of analytic and univalent func-
tions with negative coefficients and fixed second coefficient. The object of the present paper
is to show coefficients estimates, convex linear combinations, some distortion theorems and
radii of starlikeness and convexity for f(z) in the class Qn,c(a). The results are generalized to
families with finitely many fixed coefficients.
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1. Introduction

Let S denote the class of functions of the form
oo
(1.1) f(z)=2z+ Zakzk
k=2

which are analytic and univalent in the unit disc U = {2 : |2| < 1}. Given two
functions f,g € §, where f(z) is given by (1.1) and g(z) is defined by

(12) RN
k=2
the Hadamar product or convolution f * g(z) is defined by

(1.3) f*xg(z)=2+ Zakbkzk, zeU.

k=2
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By using the Hadamar product, Ruscheweyh [3] defined

z

(14) DP1(a) = =g + £, (B2 -1).
Ruscheweyh [3] observed that

z(2""1 f(2))™
(1.5) prf(z) = 2N

when n = 8 € Ng = N U {0}, where N = {1,2,...}. This symbol D" f(z) (n €
No) was called the n-th order Ruscheweyh derivative of f(z) by Al-Amiri [1].
We note that D°f(z) = f(2) and D! f(2) = zf!(z). It is easy to see that

o0
(1.6) D™f(z)=z+ »_ é(n,k)arz*,
k=2
where -k
@7 5(n, k) = (" T 1).
Let T denote the subclass of S consisting of functions of the form
o .
(1.8) f(z)=z- Eakzk (ax = 0).
k=2

Further, let Q,(a) (0 < a < 1,n € Np) denote the subclass of T whose members

satisfy :

(1.9) R(D"f(2))>a, z€U.

The class Qn() was studied by Uralegaddi and Sarangi [6]. We note that for
n = 0 the class Q,(a) was studied by Sarangi and Uralegaddi [4] and Al-Amiri

[2].
For the class Q,(a), Uralegaddi and Sarangi [6] proved the following
lemma.

Lemma 1. A function f(z) defined by (1.8) is in the class Qn(a) if
and only if

oo
(1.10) > kb(n,k)ar < 1-a.
k=2

The result is sharp.
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In view of Lemma 1, we can see that the function f(z) defined by (1.8)

in the class @, () satisfy
l-a

(1.11) ag < 2(7—}-—1_5

Let @, () denote the class of functions f(2) in @,(c) of the form
cl-@) 2 <~ &

(1.12) 1) =2- 50 - kz_:_aakz (ax > 0),

where 0 < ¢ < 1.

2. Coefficient estimates

Theorem 1. Let the function f(z) be defined by (1.12). Then f(z) €
Qn,c(a) if and only if

(2.1) > kbé(n,k)ax < (1—c)(1- a).
k=3
The result is sharp.

Proof. Putting

2.2 == 7

( ) az 2(n+1)1 OSCS19

in (1.10) and simplifying we get the result. The result is sharp for the function
. o _dlma), (1-ol-a), oo

(2.3) f(z)=2z CES IR B d) (k> 3)

Corollary 1. Let the function f(z) defined by (1.12) be in the class
Qn,c(a). Then

(2.4) - % (k> 3).

The result is sharp for the function f(z) given by (2.3).

3. Closure theorems

Theorem 2. The class Qn () is closed under convez linear combina-
tions.

Proof. Let the function f(z) be defined by (1.12). Define the function
9(2) by
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(3.) o(s) = = - ;EI s zbkz (b 2 0)

Assuming that f(z) and g(z) are in the cla,ss Qn,c(@), it is sufficient to prove
that the function H(2) defined by .

(3:2) H(z)= M)+ (1 -Ng(z) 0<A<1)
is also in the class Qpn ().

Since (1—a)

R - @) 2 -
(33) H(2) = 2~ 50277)° é{xak + (1= A)be}2",
we observe that -
(3.4) 3" ké(n, k){Aak + (1= )b} < (1= ¢)(1 - a).
k=3

with the aid of Theorem 1. Hence H(2) € Qn (). This completes the proof of
Theorem 2. , ]

Theorem 3. Let the functions

; (l-a) 2 —

(3.5) fJ(Z) =2 - -2-Zn_+13' ;ak,,z (akJ > 0)

] be in the class Qnc(c) for every j = 1,2,...,m. Then the function F(z)
defined by :

(3.6) CF(z) =) dif(2)

i=1
is also in the same class Qn (), where

(3.7) 420, j=12...,m Y dj=1.
Proof. Combining the definitions (3.5) and (3.6), we have

(3.8) Fs) = %= go g(gdak.,)z,

where we have also used the relationship (3.7). Since fj(z) € @Qn,c() for every
j=1,2,...,m. Theorem 1 yields
oo

(3.9) > ké(n,k)ar,; < (1-c)(1- )
=3
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for j =1,2,...,m. Thus we obtain

fikamkxfiwmu)=5Edﬂ§:kamkmhng(1—cx1—a)
=3

j=1 j=1 k=3
which (in view of Theorem 1) implies that f(z) € Qn,c(). 5}
Theorem 4. Let
(3.10) fa(2) = % ?
and

(3.11) fi(2) =2 QE}H%* : ;;()7(1116—) 2

for k = 3,4,.... Then f(z) is in the class Q, () if and only if it can be
expressed in the form

(3.12) | J(z2)= i Ak fr(2),
k=2

where A\, > 0 and

Proof. We suppose that f(z) can be expresed in the form (3.12). Then
we have

c(l-a) (1—o)(1—a)A
(3.13) f(z)==z- 2nt+1)” 2 Z ké(n, k) -

Since

i (1-o- a)/\kka(n,k)

2 kb (n, )
(3.14) =(1-¢)(1 - a)f:/\k =(l-c)1-a)(1-XA) <(1-¢)(1-a).
k=3

it follows from (2.1) that f(z) is in the class Q, ().
Conversely, we suppose that f(z) defined by (1.12)is in the class Qn ().
Then by using (2.4), we get

(3.15) ar < Q—_k—;()%i‘-’—) (k> 3).
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Setting
(3.16) K= (1_“‘:(—5’;’1—'?7)% (k> 3)
and
(o]
(3.17) Az=1-_ A,
k=3

we have (3.12). This completes the proof of the theorem.

Corollary 2. The extreme points of the class Qn c(c) are the functions

fi(2) (k > 2) given by Theorem 4.

4. Distortion theorems

First we need the following lemmas.
Lemma 2. Let the function f3(z) be defined by
_ c(l1-a) , 2(1-c)(l—a) 3
(#:1) (A =2- 50T D" “3mr (T2
Then, for0<r<land0<c<1,

; c(l—a) , 2(1-c)(1-a)
(4.2) |f(re®) 2 7 - 2(n+1) ‘- 3(n+1)(n+ 2)r3

with equality for = 0. For either0 < c<coand0<r<rgorco<c <1,

(l-a) P2 _ 2(1-c)(1—-a) 3
2(n+1) 3(n+1)(n+2)

(4.3) |fa(re®)| < r+

with equality for @ = w. Further, for0 < c<co andro <1 <1,

3c}(1-a)(n+ 2)]
32(1—c)(n+ 1)
4(1-¢)
3(n+1)(n+2
3(1-a)
8(n +1)2

|fa(re®) < r{[1+

A(l-a)
8(n+1)?
(1-¢)(1-a)? [ 4(1-c¢)
3(n+1)(n+2)'3(n+1)(n+2)
with equality for

(4.5) 0 = cos™(

(4.4) +(1 - o) + ﬂﬂ

+ Ir}?

+

2¢(1-c)(1— a)r? —3c(n+1)(n + 2)
16(1 - ¢c)(n+ 1)r

)

where
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ﬁ{—lle(w 1)+ 3(n + 1)(n +2) — 2(1 - @)]

(4.6) ++/[16(n+1)+3(n + 1)(n+2) — 2(1 — @)]? + 128(1 — a)(n + 1)}

and

Co =

1
2¢(1—¢)(1 - a){"s(1

(4.7) +/64(1 = ¢)2(n + 1)2 + 6c2(1 — ¢)(1 — a)(n + 1)(n + 2)}.

ro = —c)(n+1)

Proof. We employ the same technique as used by Silverman and Silvia
[5]. Since
3[f3(1‘e"")|2 (1-a)r3sind
00 (n+1)
16(1—¢) ) cos 6 — 2¢(1-¢c)(1 - ) v},
3(n+ 2) 3(n+1)(n+2)

(4.8) X {e+ 22 —22

we can see that
02

) I

for 6, =0, 6, = 7, and

_1,2¢(1=¢)(1—a)r? —3c(n+1)(n+2)

4. = i .

(4:10) B = cos™( 16(1 —¢)(n+ 1)r )

Since 63 is a valid root only when —1 < cosf3 < 1, we have a third root if and

only if 7o < r < 1land 0 < ¢ < co. Thqs the results of the theorem follow

from comparing the extremal values |f3(re®*)| (k = 1,2,3) on the appropriate

intervals. .

Lemma 3. Let the functions fi(z) be defined by (3.11) and k > 4.

Then
(4.11) | fx(re®®)| < | fa(=7).

Proof. Since

_ c(l1-a) 1-e)(1-a)
fz)=z2-507 1)‘22 ké(n, k) e
and
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(1-o(-a) ,
ké(n, k)
is a decreasing function of k&, we have
i0 e(l-a) 31-c)(1-a)
e < T4 30 F s D+ D D - T
which shows (4.11). ]

Theorem 5. Let the function f(z) defined by (1.12) belongs to the
class Qnc(a). Then for0 < r <1,

i c(l-a) 21-¢c)(1-a)
(4.12) [fre”) 2 7~ 2(n + 1) s 3(n+1)(n+ 2) E
with equality for f3(z) at z =r, and
(4.13) |£(re®)| < max{max |fa(re®)], — fa(=7)},

where maxg | fa(re'®)| is given by Lemma 2.

The proof of Theorem 5 is obtained by comparing the bounds of Lemma
2 and Lemma 3.

Remark . Putting ¢ = 1 in Theorem 5 we obtain the following result.

Corollary 3.  Let the function f(z) defined by (1.8) be in the class
Qnc(a). Then for |z| = r < 1, we have
3 (I-a) ,

(414) r- PSS+ gy

2(n+1)
The result is sharp.

Lemma 4. Let the function f3(z) be defined by (4.1). Then, for
0<r<land0<Lc<l,

(4.15) ey 21— 2=, 2-od-a),

(n+ 1) (n+ 1)(n+2)
with equality for 8 = 0. For either0 < c<cyand0<r<rorc;<c<l,

c(l1- a)r 2(l-c)(1-a) .2
(n+1) (n+1)(n+ 2)

with equality for 6 = . Further, for0 < c<c; andr; <r<1,

(4.16) |F3(re)| < 14

(1 -a)
2(n+1)

(1 -a)(n+2)

T (1-o
|f3(re a)l S {[1 + 8(1 _ c)(n+ 1)

(n+ 1)

1+ [



Fixed Coeflicients for a Class of Univalent ... 37

4(1_6)]1'2 (1-c)(1-a)? 4(1-¢c) (1 _a)]r4}7
w2 Tt )m+2) (52 | 2AnFD)
with equality for

(4.18) 6 = cos™(

(417)  + [

2¢(1—c)(1 - a)r? —c¢(n+1)(n+ 2)
8(1—¢)(n+1)r

where

€= 4(1—1_05{—[(7; +1)(n+2)+8(n+1)—2(1-a)

(4.19) +/[(n+D)(n+2)+8(n+1)—2(1-a)]2+64(1 - a)(n + 1)}

-~ and

1
2c(l-c)(1-«a

(4.20)  +/16(1 —c)2(n+1)2+2c¢2(1 - c)(1 —a)(n + 1)(n + 2)}.

™=

){-4(1 —c)(n+1)

The proof of Lemma 4 is given in the same way as Lemma 2.

Theorem 6. Let the function f(z) defined by (1.12) be in the class
Qnc(a). Then, for0 <r <1,

(4.21) I (re®)| > 1 - e(l- ) _2Ql-c)(1-a) 2

(D) (a+D(n+2)
with equality for fi(2) at z =, and

(4.22) |f'(re”)| < max{max|f5(re®)], fi(~)},

where maxg | fi(re®)| is given by Lemma 4.

Remark . Putting ¢ =1 in Theorem 6 we obtain the following result.

Corollary 4. Let the function f(z) defined by (1.8) be in the class
@Qn(a@). Then for |z| =T < 1, we have

(1-a)

(4.23) 1~ 0= <1+ +aron

(n+1)

The result is sharp.
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5. Radii of starlikeness and convexity

Theorem 7. Let the function f(z) defined by (1.12) be in the class
Qnc(a). Then f(2) is starlike of order p (0 < p < 1) in the disc lz] <
r1(n, ¢, @, p) where r1(n, ¢, a, p) is the largest value for which
(l-0)2=p)  (1=)1=a)(k=p) sr ,_

(&.1) nt+1) k8(n, k) Py
for k > 3. The result is sharp with the extremal function
_ . _l-a) , (1-c(1-0a),
(5-2) hE) =250 T R k)
for some k.
Proof. It suffices to show that
2f'(2)
——=-1|<1- 0<p<1
| ) | p (0<p<1)
for |z| < 1(n, ¢, @, p). Note that
' H°1"°r+ © (k= 1)agrk-1
63 Qo Ry IERE T
f(z) 1- 5—%—”—1}1' - Y s agrk-t
for |z| < r if and only if
c(1-a)2-p) , | k-1
2 - <1l-p.
(5.4) 5+ 1) T+ é(k plagr* " <1-p

Since f(2) is in Qn,(a), from (2.1) we may take
(A=) =)

(5-5) ar = kb-(n’ k) (k Z 3),
where A\x >0 (k> 3) and
(5.6) d A<

k=3

For each fixed r, we choose the positive integer ko = ko(r) for which ———-—kk 5(n, F)

is maximal. Then it follows that

S o1 (L=e)(1—a)(ko = p) k-
(5.7) k{;(k— p)agrt! < koa(n’kof pho=1,

Hence f(2) is starlike of order p in |z| < r1(n, ¢, a, p) provided that

e(l-a)2=p) , (1=c)(1-)(ko=p) so-
2n+1) koa(n,ko)o i< 1-p.

(5.8)
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We find the value ro = ro(n, ¢, @, p) and the corresponding integer ko(ro) so that
c(l=e)(2=p) o (1= —)(ko=p) k

. =1-p.
(5.9) 2(n +1) kod(n, ko) e’ P
Then this value 7¢ is the radius of starlikeness of order p for function f(2)
belonging to the class Q@ (). (]

In a similar manner, we can prove the following theorem concerning the
radius of convexity of order p for functions in the class @Qn ().

Theorem 8. Let the function f(z) defined by (1.12) be in the class
Qnc(a). Then f(z) is convez of order p (0 < p < 1) in the disc |z| <
r2(n, ¢, @, p), where ro(n,c, a, p) is the largest value for which
c(1-a)2-p), , A=) =a)(k=p) s <1-p

(n+1) 6(n, k)
for k > 3. The result is sharp for the function f(z) given by (5.2).

(5.10) T+

6. The class Qy , v(@)

Instead of fixing just the second coefficient, we can fix finitely many
coefficients. Let Qp,c, (@) denote the class of functions in @y c(c) of the form

(6.1) f(z)=2- Zczgt;:)) k Z ayzg,

k=N+1
where 0 < Y7_, ¢k = ¢ < 1. Note that Qn . ,(@) = Qn.c(@).

Theorem 9. The extreme points of Qn,cy, v (@) are the functions
z ck(l - a) &
ké(n, k)

and

N
(=) (1-c(1-a) ks
z Ez k6(n,k)z Ro6(n, k) 28 for k=n+1,N+2,...

The details of the proof are omitted.

The characterization of the extreme points enables us to solve the stan-
dard extremal problems in the same manner as was done for Q, (). We omit
the details.
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