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1. Introduction

The concept of a hypergroup, which is a generalization of the concept of
ordinary group, first was introduced by Marty [8]. Application of hypergroups
have mainly appeared in special subclasses. For example, polygroups which are
certain subclasses of hypergroups, are introduced by Ioulidis in [6] and are used
to study color algebra [1],[2].

The definitions and properties of the action of a group on a set, permuta-
tion group, orbit, stabilizer can be found in every text book (see [10],[15]), and
we know every abstract group is isomorphic to a permutation group, hence with
respect to algebraic structures, there is no difference between abstract groups
and permutation groups.

In Section 4 of this paper, we define the concept of the action of a poly-
group on a set and introduce permutation polygroups which is a generalization
of the concept of permutation groups. We obtain a generalization of Cayley’s
theorem, as well as some interesting results with this respect.

H,-structures first were introduced by Vougiouklis [13]. Actually, Vou-
giouklis has replaced some axioms concerning the hypergroup and hyperring by
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their corresponding weak axioms. And theén some researchers followed him, for
example see [4],[9]. '

In Section 5 of this paper we deal with a new class of hyperstructures
called weak polygroups. The concept of a weak polygroup is a generalization of
the concept of polygroup. We define the fundamental relation 8* on the weak
polygroups in a similar way as in the case of hyperstructures, and we obtain
some results in this respect. We also define semi-direct hyperproduct of two
weak polygroups.

2. Preliminaries

We recall the following definition from [2].

Definition 2.1. A polygroup is a multivalued system M =< P,.,e,”1 >,
whereee€ P, ~1:P — P, -:PXxP — P*(P), where the following axioms
hold for all z,y,z in P:

(i) (z.y).z = 2.(y.2),

(ii) ez = ze ==,

(ili) = € y.z implies y € z.27! and z € y~ ..

"In the above definition, P*(P) is the set of all the non-empty subsets of
P,and if z € P and A, B C P, then

AB= |J ab, 2.B={z}.B, Az=A{z}.
a€AbEB

And for simplicity of notations we sometimes write ab instead of a.b.

If K be a nonempty subset of P, then I is called a subpolygroup of P if
e € K and < K,.,e,”1 > is a polygroup. The subpolygroup N of P is said to
be normal in P iff

a~l'.N.a C N, foreverya€ P.

If N be a normal subpolygroup of P, the following elementary facts
follows easily from the axioms:

(i) Ne=aN, Va€P,

(ii) (Na)(Nb) = Nab, Va,be€ P,

(ili) Na = Nb, Vbe€ Na.

For a subpolygroup K of P and z € P , the right coset of K is defined
as usual and is denoted by Kz and P/K is the set of all right cosets of K in P.
If N be a normal subpolygroup of P, then < P/N,(®, N,”I > is a polygroup
where NaQ Nb = {Nc|c € Nab} and (Na)~f = Na~1.
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Definition 2.2.  (see [7]) Let M; =< Pp,.,e;,7'> and M2 =<
Py, +,e2,”1> be polygroups. A mapping f from P, into P, is said to be a
strong homomorphism if for all a,b € P,

(i) f(e1) = e,

(ii) f(ab) = f(a)* f(b)-

A strong homomorphism f is said to be an isomorphism if f is one to
one and onto. Two polygroups Py, P, are said to be isomorphic if there is an
isomorphism from P; onto P,. In this case we write P =P,

Corollary 2.3. From the above definition, we have
f(a™') = f(a)™!, Va € Py.

Proof. Since e; € aa~?, then f(e1) € f(a)*f(a™') or ez € f(a)* f(a™?).
Now by condition (iii) of Definition 2.1, we get f(a™") € f(a)™" * ez, therefore
f(a™') = f(a)™". =

Definition 2.4. If f is a strong homomorphism from P; into P, the
kernel of f,is defined by

kerf ={z € Pi| f(z)=e2}.

It is easy to see that kerf is a subpolygroup of P;, but in general is not
normal.

Theorem 2.5. (Fundamental theorem of homomorphism) Let f be a
strong homomorphism from Py onto P with kernel K such that gg~! C K, for
all g € Py, then

P/K & P,.

Proof. We define ¢ : P;/K — P, by setting
#(Kz) = f(z), Vx € P.

It is easy to see that K is a normal subplygroup of P; . We show that ¢
is well-defined. .

If K¢ = Ky, then f(Kz) = f(Ky) which implies f(z) = f(y) and s
(K z) = ¢(Ky), consequently f is well-defined. Now for every Kz,Ky€e P /K,
we have

Kz (O Ky) d({K=z|z € Kzy})
{f(2)|z € Kzy} = f(Kzy)
fE) f(2)f(y) = f(=)f(y)

P(Kz)p(Ky)
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and ¢(Kz~1) = f(z71) = f(z)! = ¢(K=z)~!. Therefore ¢ is a strong homo-
morphism. ,

Furthermore, if $(Kz) = ¢(Ky), then f(z) = f(y) which implies f(zy~1) =
e; and so zy~! C K. Therefore Kz = Kze C Kzy~ly C KKy = Ky, similarly
Ky = Kz. Thus ¢ is a one to one mapping,.

Finally, it is easy to see that ¢ is onto. Hence ¢ is an isomorphism of

P,/K onto P, and P,/K = P,, this proves the theorem. ]

3. Generalized permutations

According to [5] a generalized permutation is defined as follows (see also
(11],[14]).

Definition 3.1. Let Q be a non-empty set. A map f:Q — P*(Q)is
called a generalized permutation on 2, if

U fw) = f(@) = @,

weN
where P*(2) is the set of all the non-empty subsets of Q2. We write f =

f(z) for the generalized permutation f. Denote Mg the set of all the
generalized permutations on (.

Proposition 3.2. Let © be a one to one function from a set 2, onto
a set Q3. For a generalized permutation f on §,, we define a function O(f) on
Q2 by the formula

O(/)(y) = O(f(© (1)), Yy € %a.

Then O(f) is a genralized permutation on (1,.

Proof. Forevery y € Q,, we have ©~1(y) € Q; which implies f(@~1(y)) C
Q1, and so O(f(©71(y))) C Q2. Furthermore,

U enw = U e ') =e(lJ £(07')) = 0(2) = Q.
y€EN2 y€EN2 yEN?
| ]

Definition 3.3. ([14]) Let fi, f2 € Mq. We say that f; is a subpermu-
tation of fy, or f, contains fi, and write fi C fa, if fi(z) C fa(z) for every z
in . The mapping ¢ for which g(z) = Q for all z € Q, is called the universal
generalized permutation and contains all the elements of Mgq.
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Every map f : @ — P*(2) which contains a generalized permutation is
itself a generalized permutation.

The map i : @ — P*(Q), where i(z) = {z} =: z,Vz € Q, is a generalized
permutation. .

We can define operation o, the usual composition on Mgq,i.e. if f,g € Mq,

fog(z) = U f(y), forall ze€Q.
y€g(z)

Now we define a hyperoperation * on Mgq as follows.

Definition 3.4. Let ( :z: ) and ( e ) be two elements of Mq,
f(z) 9(z)
we define % : Mg X Mg — P*(Mgq) by setting

(‘ g(;) ) * ( f(Z) ) - {( h(:) ) |k C fog, | h(z) = Q}.

z€eN

The generalized permutation ( ; (:') ) serves as a scalar element, since

(ﬂ%)E(ﬂ%)*(«5)=(«5)*(ﬂ%)'

For f € Mg the inverse of f which is denoted by f, is the generalized
permutation defined as follows: f(y) = {2 € Q|y € f(z)}. It is clear that

(«5)6(ﬂ%)*(ﬁ%)”(ﬂ%)*<?w)'

Proposition 3.5. The hyperoperation * is associative.

Proof. Since o is associative, it follows that * is associative. u
Definition 3.6. < P,.,e,”!> is called poly-monoid if the following

conditions hold:

() (z.y).z ==z.(y.2), Vz,y,z€ P,
(iil) z € ex =z, Vz€EP,
(ili) e € z.27 1Nz tz, VzeP.

Corollary 3.7. < Mgq,*,i,” > is a poly-monoid.
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Definition 3.8. Let M =< P,.,e,~!> be a polygroup and Mg be the
set of all generalized permutations on the non-empty set 2. A mapping ¥ : P —
Mg with the properties ¥(z.y) = ¥(z) * ¥(y) and P(z~1) = P(z),Vz,y € P, is
called a representation of P by generalized permutations. ‘

4. Permutation polygroups

Definition 4.1. Let M =< P,.,e,”}> be a polygroup and { be a
non-empty set. A map f : @ x P — P*(Q) is called an action P on Q, if the
following axioms hold:

(@) fw,e)={w}=w, Yweq,

(i) f(fw,9),8)= |J f(w,e), Vg,hePYweQ,
a€g.h '

(i) U fw.9)=9, VgeP,

weN
(iv) Vg € P,a € f(B,9) = B € f(e,97).
From the second condition, we get

U fwoh)y= |J fwe).
wo € f(w,9) a€g.h

For w € Q, we write w9 := f(w, g), therefore we have:

(i) v =w,
(i) (w9)P = w9k, where
A9 = Uagande=Uw°’, VACQ,BCP,
a€A «€B
(iii) |J w? =9,
w€eN

(iv) Vg € P, a€cpfi=>pBeEA”.

In this case, we say that P is a permutation polygroup on a set  and it
is said that P acts on 2.

It is easy to see that if P is a permutation polygroup on two sets (2
and €, then P is a permutation polygroup on the set Q; X 2 with the action
defined by (w1,w2)? = {(a,b)|a € wi,b € Wi}, V(w1,w2) € U X 2, Vg€ P.

The polygroup P acts on itself as a permutation polygroup, if we define
29 =z.gorzd =gz, VgeP, Vz€P.
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Proposition 4.2. Let N be a normal subpolygroup of a polygroup P.
Let Q denote the set of all the right cosets Nx (z € P), and define

(Nz)9 = {Nz|z€ Nzg}, Vg€ P,

then P is a permutation polygroup on §.
Proof. It is easy to see that (Nz)¢ = Nz. Now, let g,h € P, then:

(Ne))* = ({Nz|z € Nzg})*
= |J {Nilte Nzh}
zENzg
= {Nt|t € Nzgh}
= |J (Nt € Noa}
a€g.h
= U (Nz)* = (Nz)9h.

a€g.h

Therefore the second condition of Definition 4.1 is satisfied.
Now, we prove that U (Nz)? = Q. Suppose that Ny € §, where

NzeQ
y € P. Since P is a hypergroup, there exists a« € P such that y € ag which

implies y € Nag, and so Ny € (Na)?, therefore Ny € U (Nz)y.

NzeQ
Now, we show that

Nz € (Ny)d = Nye (Nz)9.

To prove this, we observe that since Nz € {Nz|z € Nyg}, there exists
29 € Nyg such that No = Nz. From z € Nyg, we get g € y~ 1Nz, hence
yle ngIN and so y € Nzog~!. Therefore y € Nzg~! which implies Ny €
(Nz)™. u
Theorem 4.3. (Generalization of Cayley’s Theorem) Let P be a poly-

group acting on a non-empty finite set Q. Then there is a subset of Mg which
is a polygroup under the induced action of P and is isomorphism to P.

Proof. We define the subset Sq of Mg as follows:

_ al a2 DY alnl
({337 )oer)

The hyperoperation o on Sq is defined as follows:
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ap Qaz - O 0( ap az --° aLm )
g ... o h h ..
of of % o) 03 %q|

al a2 DI aIQI If
= € g.h
{<af o - a{m) !

then < Sq,o0,7,”!> is a polygroup, where

-1
a az Q) _ C‘fl_1 a2—1 vor a|9_ll
Q“II a'g ce a'lqnl - a-‘17 a-g coe a-lqnl *
Now, we define ¢ : P — Sq by
_ al a.2 DY alnl
n (O‘g @ o) )

It is easy to see that ¢ is well defined, one to one and onto. Moreover ¢
is a strong homomorphism because, for every g, € P, we have

#(g-h) = {¢(f)|f € g.h}

_lf @ ez o g
—{(a{ of .. a.’m)'“-""‘}
= ¢(g9)ogp(h).

Therefore P 22 Sq. 5]
The above theorem is true when  is infinite.

Definition 4.4. Let P be a polygroup acting on non-empty sets £,
and Q2. A map O : Q; — Q is called a P-map, if O(z9) = O(z)Y, for all g-€ P
and all z € ©;.

If © is also a one to one correspondence, then O is called a P-isomorphism
and Q4,, are called isomorphic.

Proposition 4.5. If P is a polygroup and A, p are the left and the right
regular representation of P, i.e. \y:z — g~ .z, p,:z — x.g, then (P,)\) and
(P, p) are isomorphic.

Proof. We define ©@ : P — P by ©(z) = ™!, then
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O(pgz) = O(z.9) = {O()ly € 2.9} = {y~'|y € 2.g}
= (z.9)"'=gliz7l =¢g71.0(z) = A\,0(z).
Since © is one to one therefore, it is a P-isomorphism. ]

Definition 4.6. Let P be a permutation polygroup on a non-empty
set . For o, € Q define ~ by
a~ (3 iff a« € B9 for some g € P.

Lemma 4.7. The relation defined above is an equivalence relation on

Now let Q = U A(a) be the partition of Q with respect to this rela-

a€l
tion. Then the sets A(a),a € I, are called orbits of P on .

Definition 4.8. Let P be a permutation polygroup on a non-empty
set Q. If P has only one orbit; that is, if @ ~ 3 for every a, 8 € Q, we say that
the polygroup is transitive on Q. If |I| > 1, we say that P is intransitive.

Theorem 4.9. Let P be a permutation polygroup on a non-empty set
Q, then the polygroup P is transitive on every orbit.

Proof. Let A(a) be the orbit containing o € . Clearly, for the set
A(ea), conditions (i), (i) and (iv) of Definition 4.1 hold. Therefore we prove the
third condition of Definition 4.1, i.e.

U w? = A(a), VgeP.
weA(a)

To prove this suppose € w?, then B € wf for some wy € A(a). So
0

wEA(x)
B ~ wg and wg ~ a which imply 8 ~ a or § € A(a), therefore U w?! C Aa).
weEA(x)
If A(e;),t € I, are all the disjoint orbits, then
U w! C Ae;), Viel.
weA(a;)
But, | JA(ei) = Qand A(a)NA(e) =@, Vi#j.So | w¥=A4A(i), Vier
i€l wEA(a;)

Therefore P acts on A(a).
Now suppose that 81, 82 € A(e), then B; € a9, B, € o' for some g, h € P.
By the forth condition of Definition 4.1 , we have a € ﬁg_l and so
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Bre By =850
Therefore there exists £ € h~1g such that 8, € £3. W

Corollary 4.10. Let P be a permutation polygroup on a finite set Q.
If A is an orbit of P such that || = |A|, then P is transitive on Q2.

Definition 4.11. Let P be a permutation polygroup on a non-empty
set Q and let w € Q. The set

P,={ge P =w" ={w}}CP
is called the stabilizer of w.
Corollary 4.12. The stabilizer P, is a subpolygroup of P for each
weN.

Definition 4.13. Let P be a permutation polygroup on a non-empty
set Q and wy, - -+ ,wx € 2, then the stabilizer P,,,..., is the subpolygroup

=1

Py, = {9 € Pl = wf-l = {w;}, foralli=1,---,k}.
This may be expressed also by .
Py g = ) Posi-

It follows that if P acts on  and w;,w; € §, then P,, and P, act on

(Pun)m = Puyup = (sz)wx-

and

Definition 4.14. Let P be a polygroup and P acts on 2. The kernel
of action is defined as follows:

H = {g € P|lu? = {w}, VweN}.

Proposition 4.15. Let N be a normal subpolygroup of a polygroup P.
If Q is the set of all the right cosets of N in P, P acts on §) and the kernel of

this action is
H= n z 'Nz.
zEP
Proof. Suppose that g € H, then
(Nz)? = {Nz|z € Nzg} = {Nz}.
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From z € Nzg, we get g € 71Nz = 271 Nz, therefore

g€ n z7!Nz.
z€P

Now let g € n z7 1Nz, then g € z‘lNa:, for every z € P.

z€P
We have
(Nay = {Nz|z€ Nzg}
- € {Nz|z€ Nzz"'Nz}
C {Nz|lz€ NzN}, since NP
= {Nz|z€ NNz}
= {Nz|z€ Nz} = {Nz}.
Therefore g € H. - ]

5. Weak polygroups

Definition 5.1. A multivalued system M =< P,.,e,”!>, where
ecP, "1:P— P, -:PxP — P*P)is called a weak polygroup, if the
following axioms hold for all z,y,z € P :

(i) (z.y).zN z.(y.2) # O (weak associative ),

(ii) z.e = 2 = e.z,

(iii) z € y.z implies y € z.27! and 2 € y~1.z.

The following elementary facts about weak polygroups follow easily from
the axioms:

eczzlnz lz, el=e (z71)'=uz.

Proposition 5.2. Let(G,.) be a group and @ be an equivalence relation
on G such that:

(i) z6e implies = = e,

(ii) =6y implies z=10y~1.
Let 0(z) be the equivalence class of the element x € G. Suppose that G/8 =
{6(z)|z € G}. Then < G/6,0,6(e),”! > is a weak polygroup, when the hyper-
operation @ is defined as follows:

©:G/8x G/6 — P*(G/6)
8(z) © 8(y) = {6(2)|z € 8(=).0(y)},
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and 8(z)~1 = 6(z1).
Proof. For all z,y, 2 € G, we have

z.(y.2) € 8(z) © (6(y) © 6(2)),

(2.9)-2 € (8(z) © 6(y)) © 8(2),
therefore @ is weak associative. It is easy to see that 8(e) is the identity element
in G/0 and §(z~1) is the inverse of 6(z) in G/6. Now, we show that:

0(z) € 6(z) © 0(y) implies 6(z) € () ©8(y~") and 8(y) € 8(z~1) © 6(z).

We have 6(z) € 8(z) ® 8(y) = {6(a)la € 0(z).0(y)}, hence 6(z) = 6(a)
for some a € 6(z).0(y), therefore there exist b € 6(z) and ¢ € 6(y) such that
a = b.c, 50 b = a.c™! which implies 8(b) = 8(a.c™*) € 6(a) © 8(c~'). Therefore

6(z) € 6(z) @ 6(y™")
In a similar way, we get
6(y) € (=) © 0(2).

Therefore < G/0,®,0(e),"’ > is a weak polygroup. )
An extension of polygroups by polygroups has been introduced in [1].
In the following we define an extention of a weak polygroup by another weak

polygroup.

Definition 5.3. (An eztension construction) Suppose that A =<
A,..e,”'> and B =< B,.,e,”! > are weak polygroups whose elements have
been renamed so that A N B = {e} where e is the identity of both A and B. A
new system A[B] =< M, *,e,”1>, which is called the extension of A by B, is
defined in the following way:

Set M= AUBandletel=¢e, 2 1=271, exz =2z xe =z for all
“z € M, and for all z,y € M — {e},

z.y if z,y€A,

T if zeB,y€eA,
THY = ] if z€A, yeB,

Ty if z,y€B, y#z7l,

zyUA if z,y€B, y=z"L.

Now, we show that the extension construction will always yield a weak
polygroup.
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Theorem 5.4. A[B] is a weak polygroup.

Proof. The verification of the third condition of Definition 5.1 is similar
to the proof of Theorem 1 in [1]. Therefore we show that weak associativity is
valid. For all z,y, z in M, we consider the following cases:

(1) Ifz,y,z € A, then (z.y).z= (z*y) * z and z.(y.2) = = * (y * 2),

(2) If z,y,z € B, then (z.y).2 C (z *y) * z and z.(y.2) C 2 * (y * 2),

(3)Ifx € A,y,2 € B, then (y.2) C(z*y)*zand y.z2 C z *(y * 2),

(4)Ifae A,ye B,z€ A, theny € (z*xy)*xzand y € z * (y * 2),

(5)Ifze A,ye A,z€ B,then z€ (z*y)*z and z € z * (y * 2),

(6)Ifz € B,y,z€ A,thenz € (z*xy)*xzand € z * (y * 2),

(YIfzeB,ye B,z€ A,thenz.y C(z*y)*zand 2.y C z * (y * 2),

(8)Ifz € B,yc€ A,z€ B,thenz.2 C (z*y)*zand z.2 C z * (y * 2).
Thus, * is weak associative. (]

The following definition, first was defined in [2] for polygroups.

Definition 5.5. The equivalence relation # on a weak polygroup M is
called a full conjugation on M, if:

(i) 20y implies 210y, 2
(ii) z € z.y and 2160z imply z; € z;.y; for some 2; and y; where
6(z,) = 6(x) and 6(y1) = 6(y).

The collection of all #-classes, with the induced operation from M, forms
a weak polygroup.

Proposition 5.6. Let M be a weak polygroup, then 6 is full conjuga-
tion on M if and only if

(i) (6(z))"! = 6(z~!) and

(i) 6(6(x)y) = 0(2)0(y)-

Proof. The proof is similar to the proof of Lemma 3 of [2]. =]

Definition 5.7. (see[7],[14]). Let A =< A,.,e1,7! >,B =< B, *,e3,”! >
be weak polygroups, and let f be a mapping from A into B, such that_f(e1) = e;.
Then f is called:

(i) a weak homomorphism, if

fy)n f(e)* f(y) #0, Vaz,y€ A,
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(ii) an inclusion homomorphism, if

f(z.y) € f(2) % f(y), Va,y€ 4,
(iii) a strong homomorphism, if

f(zy) = f(2)* f(y), Vz,y€ A

If f is one to one, onto and strong homomorphism, then it is called an
isomorphism. Moreover, if f is defined on the same weak polygroup, then it is
called an automorphism. The set of all automorphism of A, written AutA, is a
group.

Let M =< P,.,e,”! > be a weak polygroup. We define the relation B* as
the smallest equivalence relation on P such that quoient P/3* is a group. In this
case 3* is called the fundamenatl equivalence relation on P and P/8* is called
the fundamentl group. This relation is studied by Corsini [3] concerning hyper-
groups, see also [9],[13],[14]. Suppose $*(a) is the equivalace class containing
a € P, the product © on P/fB* is as follow:

B*(a) © B(b) = B*(c), Ve € B*(a).B*(b).

Let Up be the set of all finite products of elements of P and define the
relation # on P as follows:

zfy iff {z,y} Cwu, forsomeu€Up.

Similar to the proof of Theorem 1.2.2 of [14], one can prove that the
fundamental relation 3* is the transitive closure of the relation 3.

The kernel of the canonical map ® : P — P/B* is called the core of P
and is denoted by wp. Here we also denote by wp the unit element of P/p*. Tt
is easy to prove the following statements:

(i) wp = B*(e),
(i) g*(z)~! = p*(z~'), Vz € P.

Lemma 5.8. B* is a full conjugation.

Proof. We verify the necessary and sufficient conditions of Proposition
5.6 to prove that §* is a full conjugation. The first condition of Proposition
5.6 is verified by using the above relation. To verify the second condition, we
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have #*(z) C B*(=) and {y} C B*(y) which imply 8*(8*(z)y) = B*(z.y). And
so B*(8*(z)y) = B*(z) © B*(v)- w

An element z € P will be called single, if its equivalence class with respect
to B* is singleton, i.e. B*(z) = {z}. We denote the set of all the single elements
of P by Sp. It is straightforward to prove that fora € P and z € Sp,if z € a.y
for some y € P, then 8*(a) = {z € P|zy = z}.

Let My =< Py,.,e1,”1 > and My =< Py, %,e2,”1 > be two weak poly-
groups, then on P; X P; we can define a hyperproduct as follows:

(z1,%1)0(z2, ¥2) = {(a,b)|a € z1.z3, bE y1 *y2}.

We call this the direct product of P; and P,. It is easy to see that P, X P
equipped with the usual direct product operation becomes a weak polygroup.

Theorem 5.9. Let 37,3 and B* be fundamental equivalence relations
on Py, P, and P, X P, respectively, then

(P1 x Pp)/B* = P1/B} X P2/B3.
Proof. First we define the relation E on P, X P, as follows:
(21, 1)B(22, ¥2) <= 21852, y1532-
j is an equivalence relation. We define ® on (P, x P;)/ B as follows:
B(z1,11) © B(z2,v2) = B(a,b),

for all @ € B(z1).8%(z2) and b € B3(v1)-83(y2)-

Since P, and P, are weak associatives, we see that is © associative and
consequently (P, x P;)/B is a group.

Now let 8 be an equivalence relation on P; X P; such that (P, x P;)/@
is a group. Let 8(z1,y1) be the class of (21,31). Then 8(z1,%1) © 8(z2,y2) is
singleton, i.e. 6(z1,y1) © 0(z2,y2) = 0(a,b),V(a,bd) € 0(z1,¥1).0(x2,y2). But
also for every (21,%1),(22,¥2) € P1 X P, and A C 0(z1,%1), B C 0(22,y2) we
have 8(z1, %) ©8(z2, ¥2) = 8((z1,%1).0(22, y2)) = 6(AB), so this relation is valid
for all finite products which means that the equality 6(z,y) = 0(u,v) for every
(u,v) € Up,xp, and = € u,y € v holds.

Now, if (z,y) € ﬁ(a,b), then zf}a and yB3b. We have

zfta iff 321,y Tmy1 With 21 = 2,Zm41 = a and vy, -+, um € Up, such
that
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{zi,zip1} Cwi, i=1,---,m, and

yBsb iff g1, -+, Ymar With 41 = §,Ynt1 = b and vy, -+, 00 € Up, such
that

{v;» 541} Cvj, F=1,--,m

Therefore, (zi,¥;) € (i v;), (Tig1,Yj41) € (wi,v), i=1,--,m, j=

1,---,n. And so 8(zi, y;) = 0(ui, v;), (241, Yj1) = O(uiyv;), i=1,---,m, J
1,-++,m

which implies 0(z;,y;) = 0(zit1,Yj+1), 1=1,---,m, j =1,---,n. Therefore
6(z,y) = 6(a,bd) or (z,y) € 8(a,b). So we get

(z,9)B(a,b) => (z,y) € 6(a,b).
Thus, the relation B is the  smallest equivalence relation on Py x P; such

that (P, x P,)/B is a group, i.e. = 5*.
Now, we consider the map

f:Pi/B] x Py/B5 — (P x P2)/B"

with f(85(z),B3(y)) = B*(z,y). It is easy to see that f is an isomorphism. =
Using the fundamental equivalence relation we define semi-direct hyper-

product of weak polygroups.

Definition 5.10. Let A =< A,.,e;,”!> and B =< B,*,e3,”1 > be
weak polygroups. We consider the group AutA and the fundamental group

B/Bg, let

~ :B/By — AutA

B*(b) — B*(6) =b
be a homomorphism of groups. Then on A x B we define a hyperproduct as
follows:

(a1,b1)0(az, b2) = {(@‘,y)l%‘ € 01-1;1(02),?/ € by * by}

and we call this the semi-direct hyperproduct of weak polygroups A and B.
The above definition, first was introduced by Vougiouklis [12] concerning

hypergroups.

Theorem 5.11. A x B equipped with the semi-direct hyperproduct is a
weak polygroup.
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Proof. Similarly to Theorem 2.4.1 of [10], weak associativity is valid.
Since a = a.ﬁ(el),a = e1.63(a) and b = b * ez = ez * b, we have (a,b)o(e1, e2) =
(a,b) = (e1,e2)o0(a,b), i.e. (e1,ez) is the identity element in A X B, and we can
check that (ﬁ(a"l),b‘l) is the inverse of (a,b) in A X B.

Now, we show that (21, z2) € (21, 22)0(y1, ¥2)=(21, 22) € (21, 22)0(¥1, ¥2) ™"
and (y1,¥2) € (1,22) Yo(21, z2). We have (21, 22) € (1, 22)0(y1,42) = {(a,b)|a €
21.73(y1),b € z2 * y2} which implies 2z, € 21.72(y1) and 22 € T3 * y2. Since
21 € 21.73(1) we get 1 € 21.%3(y1) " or 2y € 2. 73(yrt). Since 29 € 2 * Y2,
then T2 € 22 % yy Therefcﬂa\ﬂ*(mg) = ,B“(ZQ)/Q B*(y;') and so B*(z2) =
B*(22) © B*(yz1) = ﬂf(\zz).ﬂ*(ygl) or T3 = Hy; . Therefore we get z1 €
7.5y (y71). Now , we have (21,22) € {(a,b)|a € 21.597 (Y7 ), b € 2 * y; '}
or (21,22) € (21, 22)0(y1,y2) ™"

On the other hand, we have

(z1,22) To(z1,22) = (237 (27"),27")0(21,22)

{(@b)la€ 77 (57).55 (22), b € 27" % 22)

{(a,b)|a € x5 (z7".21),b € z;1 * 22}

Since z; € z1.Z3(y1) implies Z3(y1) € :cl‘l.zl hence y; € a::'ﬁ(:cl’l.zl). Therefore
(y1,92) € (21,22)"To(21, 22)- .
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