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1. Introduction

Let G = (V, S) be a non directed graph. Given a set H of colours and two
positive integers s, with s > 7, we say that K : V — H is an L(r, 8)-colouring
of G, if in every simple chain of G of length s — 1 there are at least vertices
z1, Zg, ..., &y such that | K (z1,22,...,2:)| = 7.

The minimum number of colours so that G has an L(r,s)-colouring is
said to be the (7, s)-chromatic number of G and it is indicated by Xr,s, [3]-

A colouring L(r, ) is the classical vertex-colouring of a graph. A caterpil-
lar is a tree Ty such that T’ = (21,22, .-, Z|T)> obtained deleting the verteces
of T' of degree one, is a path. 7' is called the spine of 7" and its verteces are
the spinal modes of Ti.

The neighborhood I'(z) of z € V(T1) is the set of all vertices adjacent to
z. The end-neighborhood T';(z) consists of all the leaves in I'(z). Let di(z) =
ITy(2)], T1(G)=Tr - T3

Let T be the following tree: T =T1 UT2U...U T,,where T;, 1<i<n
is a caterpillar, T/ = {0, Zi1, Tiz,- -+ ,a:,-|T';|} is a spine of the Tj-caterpillar and
d(zi;) > 2forj=1,...,|T], h= |T!|, h > 1. T will be called an h-caterpillar
with spine T/ = {z10, T21,Z30,- - > xﬂT'lo}‘

At last we indicate by y;;x the vertices of T; such that di(zi5) = [T1(zi;)|
=k, fori=1,...,n,j5=1,...,|T{| —1,and £ 2 0.
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2. Study of xs,s

Theorem 2.1. Let T be an h-caterpillar. If s > 3,h+2 < s<2(h+1)
and |T'| > 3s — 8, then:

i) Xs,s = "—(’—:-Z)- for s even,

#) Xo,s = 1"—"'4—1)3 for s odd.

Proof. Suppose s > 3,h+2 < s<2(h+1)and |T'| >3s—8. Let K
be the L(s, s)-colouring of T', defined as follows:

K(zge4i) =wi 1=1,....s, ¢20.

Consider the vertices 21, p=1,...,|T’|. We define K (1) = ws4p P =

1,...,8—2 and
K(2p1) = K(vps) k2 0.

Now, since it results s > h + 2, it is immediate to colour the remaining
vertices zp; and Yp1x, $—1 <P < |T'| K > 0, repeating cyclically the new
colours ws41,Ws42 - -+ yWat(s—2)

Consider the vertices zp2, p=1,...,|T"|.

We define

K(zp2) = wa(s—1)4p P=1,...,8—4 and K(y) = K(zj-1)
for each
yeT(z;)UT1(G), j€(s—2,s—1,...,|T'| = (s-3))

and wg = ws.

It follows 245 = s.

= Suppose that there exists a vertex z;,s —2 < i < |[T'| — (s — 3) such
that dy(z;) > 0. It is immediate to see that in the graph there is a path of
lenght s — 1 not colourable by s distinct colours.

Hence x;, = s+ 1.

ii) < Let K be the L(s,s)-colouring of T' so defined:

K(z;) =w; foreach i=1,2,...,s
K(zpsyi) = K(z;) foreach i=1,2...,s-1, p>0
K(y) = K(zj-1) foreach y € I'(z;) NT1(G),
jd(s=2,s—1,...,|T'|=(s—-3)) and wo=w,
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K(y) = ws41 for each y € I(z;)NT1(G), y € (s—2,8=1,...,|T'|=(s-3)).
It follows x5 < s+ 1.

Now suppose Xs,s < 8+ 1.

Necessarily from 1) and 2), in the graph there is a path of lenght s — 1
not colourable by s distinct colours. Hence we have x,,s = s+ 1.

= Suppose that for each z;, s—2<i<|T|—(s-3), dy(z;) = 0.

It follows x;,s = s.

Moreover if @, zj, for s—2 <k < j<|T'|-(s—3), are two vertices
such that dy(zg) >0, di(z;) >0 and d(2k,2;) =s—3, then thereisin

-1 _p-1 pp-1)
6 2 2

If R; is the family of blocks of ¥ such that b € R; if and only if |[pnW]| = 1,
fori =0,1,2,3,and D = R3URp, D = Upep-Db, then the set WNS is a blocking
set for the partial system %/ = (D, B — D).

p= Ezt’l, where h is an odd number, it follows:

r3(W) + ro(W) = o

2 — 4v + 3h?
ra(W) + ro(W) =
hence: 3 aoiea
v —4v +
BE)= ———
where we consider a set W C §, |W|= %L, .

Theorem 2.2. For every S5(4,5,v), v>5, itis:

_ v — 1603 + 86v% — 176v + 105
- 1.920

B

Proof. Let £ = (S, B) be an 5(4,5,v) system, v > 5.
If W C S and |W|=p>0, m=|B| we have

5 ; )
m= S r(W), ra(W)+ 5rs(W) = (’4)

-0

5
Z ir (W) = p(v - 1)('0;12)(1) - 3l)'

=1
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3. Study of x;s

Theorem 3.1. Let T be an h-caterpillar. If |T'| > 3s—8, s> 3,
and 4<38<2h+1), then:

i) Xrs ST+ (r—3)(r—§—1) for s even,

i) Xr,s < 7+ (r — 21)? for s odd.

Proof. Suppose 4 < s < 2(h+ 1) and |T'| > 3s — 8. Let K be the
L(r, s)-colouring of T, defined as follows:

K(zpo) =wi, t=12,...,7, p=gqr+1, ¢20

K(zp) = K(ypjr) = K(2p—jo) 1<j<s—r<r, k>0
p=gr+i, i=1,...,7 q¢>0 and wy = wy.
Ifs—r=gqr+t ¢20,t<r, then we repeate the colours w;, 1 =1,...,r.

Consider the vertices Zps—r41, P=1,2,...,|T’|.
We define

K(zps—rt1) =Wr4p P=1,...,8—2(s—7)—2 and

K(zp,s-r+1) = K(Ypo-r41,6), k20.

Now it is immediate to colour the remaining vertices xps—_r41, P =
s—2(s—r)—1,...,|T'| and Yp,s—r+1,k, Kk = 0, repeating cyclically the new
colours Wy41, Wr42, Wri3ds - -5 Wrys—2(s—r)-2-

Consider the vertices zp s—r4+2 and Yps—r42,k, P=1,...,|T'| and k£ > 0.
We colour the vertices i1,s—r42, +++y Ts—2(s—2)—d,s—r+2 DY S$—2(s—1)—4
new colours and we repeate cyclically these colours for the remaining vertices,

Where K(xpv"'r'f'z) = K(yP.G""‘PZk)'

In general, we consider the vertices zp,-24j, P = 1,2,...,|T'| and
j < %—(s—r)for seven (j < = —(s—r) for s odd). We colour the
vertices T1,5—r+jy T2,z=r+jr +++r Ts=2(s—r)—2j,8—r+j by s — 2(3 - 1‘) — 2j new
colours and repeate these colours cyclically, where it results K(zp,—r4j) =

K(Yp,s—r+jk), k20
Now, given the vertices z,, ¢ for s even and z,, 1 for s odd, it is possible

to colour them as follows:
K(zp,3) = K(p41,4-1) and K(zp41,2) = K(2p,3-1)
p=1,2,3,...,|T|-1 and K(mp,é) = K(yp’g’k)

K(zpy1,8) = K(Yp,2,x), for s even,
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K(:z:p',_;_l) = K(yp,._;l'k) = K(:cp'.T_l), for s odd.

At last, for each vertex z;, 24 ; it is immediate to see that it exists a colour
w; € (wy,ws,...,ws) such that

K(2p,245) = K(Yp,34+jk) =wj> k20
It follows:

Xrs STH[8—-2(s—7)—2]+[s-2(s—7)—4]+...+2

s s .
_r+(r—-—2-)(r—§—1), for s even.

Xrs Sr+[s—2(s—71)-2]+[s-2(s—7)—4]+...+1
='r+(r-—-3-|2-—1)2, for s odd:

Corollary 3.1. LetT* be a sub-tree of T, s > 3 and h+2 < s < 2(h+1),
then:

i) 8 < Xs,s < "—("—:—2)-2]‘01' s even;

i) 8 < Xa,s < i-’_+41)_ for s odd.

Proof. It follows from Theorems 2.1, 2.2, 2.3 [5], from Theorem 2.1 [6]
and from Theorem 2.1. ]

Corollary 3.2. Let T* be a sub-tree of T, s > 3 and 4 < s < 2(h+ 1),
then:

)7 < Xrs T+ (r—5)(r— 5§ —1), for s even;

i) 1 < Xrs <7+ (r — 2L)2, for s odd.

Proof. It follows from Theorem 2.2, [6] and Theorem 3.1. [
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