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0. Introduction

In a previous paper U. G. De and N. Guha [1] introduced a generalized
recurrent manifold. In this paper, we consider a nonflat Riemannian manifold
(M™,g) (n > 2) whose curvature tensor R satisfies the condition

(1) (DxR)(Y, Z)W = A(X)R(Y, Z)W + B(X)g(Z, W)Y,

where A and B are two 1-forms, B is non-zero, P and @ are two vector fields
such that

(2) 9(X, P) = A(X),

(3) 9(X,Q) = B(X),

for every vector field X and D denotes the operator of covariant differentiation
with respect to the metric g. Such a manifold may be called a semi-generalized
recurrent manifold and the 1-form B may be called its associated 1-form. An
n-dimensional semi-generalized recurrent manifold shall be denoted by (SGK)y.
If the 1-form B in (1) becomes zero, then the manifold reduces to a recurrent
manifold [2].

In this paper the nessecary and sufficinet condition for constant scalar
curvature of (SGK), is obtained. (SGK), with Codazzi type of Ricci tensor
and cyclic Ricci tensor are studied. Finally it is shown that if (SGK),, admits
a parallel vector field V then V is orthogonal to @ and if it admits a concurrent
Vvector field V' then V is not orthogonal to Q.
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1. Preliminaries

Let Ric and r denote the Ricci tensor of type (0,2) and scalar curvature
respectively and L denote the symmetric endomorphism of the tangent space at
each point corresponding to the Ricci tensor, i.e.

(1.1) g(LX,Y) = Rie(X, -Y):

for any vector field X and Y.
From (1), we get

(1.2) (DxRic)(Z,W) = A(X)Ric(Z,W)+ nB(X)g(Z,W).
Contracting (1.2), we obtain

(1.3) dr(X) = A(X)r + n?B(X).

2. Scalar curvature of a (SGK),
From (1.3), we see that if r = 0, then

B(X) = 0.

But B(X) cannot be zero. Hence we have

Theorem 1. The scalar curvature of a (SGK), (n > 2) cannot be
zero.
Now let us asuume that (SGK), is of constant scalar curvature. Then

from (1.3), we find
AX)r+ n?B(X) =0,

or
(2.1) B(X) = - A(X).
Again if (2.1) holds, then from (1.3), we get

r = const.

Hence, we can state the following theorem.

Theorem 2. A (SGK), (n > .2) is of constant curvature if and only
if (2.1) holds.
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3. (SGK), with Codazzi type of Ricci-tensor

In this section we consider a (SGK), in which the Ricci-tensor is a
Codazzi tensor [3]

(3.1) (Dx Ric)(Y, Z) = (DzRic)(Y, X).
By virtue of Bia.nchi‘identity and (3.1),
(3.2) (divR)(X,Y)Z = 0,

where div denotes the divergence with respect to D. In view of (1), we get on
contraction

(3.3) (divR)(Y, Z)W = A(R(Y, Z)W)) + B(g(Z,W)Y).
Now using (3.2) in (3.3), we obtain
(3.4) A(R(Y, Z)W) = —-B(9(Z,W)Y).

Putting Z = W = ¢; in (3.4), where {¢;}, ¢ = 1,2,...,n is an orthonormal basis
of the tangent space at any point, we get by the sum of 1 < 7 < n of the relation
(3.4),

(3.5) A(LY) = —nB(Y)

where L is defined in (1.1).
From (1.2) and (3.1), we get

(3.6) A(X)Ric(Y, Z) — A(Z)Ric(Y, X) + n[B(X)g(Y, Z)
-B(Z)g¢(Y,X)]=0.

On contraction of (3.6), we find

(3.7) A(X)r = A(L(X)) - n(n - 1)B(X).

Using (3.5) and (3.7) in (1.3), we have

(3.8) dr(X)=0.

Again it is known [4] that in Riemannian manifold (M™,g) (n > 3),

n—

(39)  (diwC)(X,Y)Z = 2=

S (DxRic)(Y, Z) - (DzRic)(Y, X)]
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+ 30 0K V)ar(2) = (¥, 2)dr(),

where C denotes the conformal curvature.
As a consequence of (3.1) and (3.8), (3.9) reduces to

(3.10) (divC)(X,Y)Z =0

which shows that the tensor C is conservative [5].
Hence we can state the following theorem.

Theorem 8. If in a (SGK), (n > 3) the Ricci-tensor is a Codazzi
tensor then its conformal curvature tensor is conservative.

4. (S§GK), with cyclic Ricci-tensor

In this section we consider a (SGK), in which the Ricci-tensor is a cyclic
tensor, i.e.

(4.1) (Dx Ric)(Y, Z) + (Dy Ric)(Z, X) + (DzRic)(X,Y) = 0,
which implies that
(4.2) . dr(X)=0.
By the definition of (SGK),, we have
(4.3) dr(X) = A(X)r + #*B(X).
Therefore from (4.2) and (4.3), we get
(4.4) A(X)r+n?B(X)=0.
From (4.1), we have
A(X)Ric(Y, Z) + A(Y)Ric(2, X) + A(Z)Ric(X,Y)

+a[B(X)g(Y, Z) + B(Y)9(Z, X) + B(Z)g(X,Y)] = 0,
which yields on contraction
(4.5) A(X)r+ 2A(L(X)) + n[nB(X) + 2B(X)] = 0.
Now in view of (4.4) and (4.5), we find

A(L(X)) = ZA(X)
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or
Ric(X,P) = %g(X, P).

Hence, we have the following theorem -

Theorem 4. Ifa (SGK), has cyclic Ricci-tensor, then r/n is an eigen
value of the Ricci tensor Ric and P is an eigen vector corresponding to the eigen
value. '

5. (SGK), with concurrent and parallel vector fields

In this section first we supppose that the (SGK), admits a concurrent
vector field V, [6]. Then

(5.1) DxV = pX, where p is a non-zero constant.
By Ricci-identity, we obtain
(5.2) R(X,Y)V =0.
Taking covariant derivative of (5.2), we get
(5.3) (DwR)(X,Y)V = —pR(X,Y)W.
Also by definition of (SGK),, we find |
(5.4) (DwR)(X, Z2)Y = A(W)R(X, Z)Y + B(W)g(Z,Y)X.
In view of (5.2), (5.3) and (5.4), we have
—-pR(X,Y)W = B(W)g(Z,V)X.
On contraction, we find
—pRic(Z,W) = nB(W)g(Z,V).
Again oﬁ contraction, we get
(5.5) —pr =ng(Q,V),
since p # 0 and r # 0, then ¢g(Q,V) # 0.

Hence, we have

Theorem 5. If a (SGK), admits a concurrent vector field V, then V
i8 not orthogonal to Q, where Q is the associated vector field to the 1-form B.
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If in particular p = 0, then the vector field V' becomes parallel [6], i.e.
DxV =0.

Then (5.5) yields
9(@,V)=0.

Thus, we get the following theorem.

Theorem 6. If a (SGK), (n > 2) admits a parallel vector field V,
then V is orthogonal to Q.
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