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In this paper, first we present a general common fixed point theorem for four compat-
ible mappings, which extend the results of Jungck and Rhoades [2] and Telci, Tas and TFisher
[5]-[7]. Secondly, we extend our result for sequences of mappings.
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*

Let S and T be two self mappings of a metric space (X,d). Sessa [3]
defines S and T to be weakly commuting if d(STz,TSz) < d(Tx,Sz) for all 2
in X. Jungck [1] defines S and T to be compatible if lim, d(STzp,TSz,) =0
whenever {z,} is a sequuence in X such that lim, oo S, = limy oo T2, =2
for some 2z € X. Clearly, commuting mappings are weakly commuting and
weakly commuting are compatible, but neither implications is reversible. (Ex.1,
[4] and Ex.2.2, [1]).

Lemma 1. Let f and g be the self mappings of the set X = {z,a’}
with any metric d. If the range of g contains the range of f, then the following
statements are equivalent:

1) f and g commude,

2) f and g weakly commute,

3) f and g are compatible.

By Lemma 1 we suppose that X contains at least three points.

Lemma 2. ([1]) Let f and g be compatible self mappings on a metric
space (X, d). If f(t) = g(t), then fg(t) = gf(?).

The following theorem is proved in [2].
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Theorem 1.  Let {S,I} and {T,J} be two pairs of compatible self
mappings of a complete metric space (X, d) such that

d(Sz,Ty) < g(d(Iz,Ty),d(Iz, Sz),d(Jy,Ty)) (1)

for any x,y € X, where g : R — R is continuous and satisfies:

(?) 9(1,1,1)=h < 1 and

(ii) whenever u,v > 0 and either v < g(u,v,v),u < g(v,u,v) or u <
g(v,v,u), then u < h.v.

IfT(X)cI(X), S(X)C J(X) and if one of I,J,S or T is continuous,
then I,J,S and T have a unique common fized point z. Further, z is unique
common fized point of I and S and of J and T.

Let H be the set of real upper semi-continuous functions g(¢y,...,%s5) :
R} — R, satisfying the following conditions:
Hy: g is non-decreasing in variables ¢, and s,
Hj: g(u,0,0,u,u) < u,Vu > 0,
Hj: there exists 0 < & < 1 such that for every u,v > 0 with
H,: u< g(v,v,u,u+ v,0) or
Hy: u < g(v,u,v,0,u+ v),
we have u < h.v.

Example 1. g(t1,...,t5) = amax{ty,ts, 3, 1(t4 + t5), bv/Z4.75}, where
0<a<1l,b>0andab< 1.

Hy: Obviously. '

H;: g(u,0,0,u,u) = a. max{u,bu} = ab.u < u for u > 0.

Hg: g satisfies (H3) with b = a.

Example 2. g(t1,...,ts5) = [c1. max{t?, 13,13} + co. max{taty, tats} +
C3.l4t5]%, where ¢; > 0,¢2,¢3> 0,61 +2c2 < 1ande; +¢3< 1.

Hy: Obviously.

Hs: g(u,0,0,u,u) = \/c1 F cz.u < ufor u > 0.

Hj: If u < g(v,v,u,u + v,0) then u? < ¢;. max{u?, v} + c2.v(u+ v). If
u > v then u? < (¢; +2¢2)u? < u? for u > 0, a contradiction. Then u < v. Thus
there exists hy € [0,1) such that u < hyv. Similarly, if v < g(v,%,v,0,u + v)
there exists hy € [0,1) such that u < hz.v. Therefore, v < h.v, where h =
max{hy, ho} < 1.

Example 3.

p. ma.x{tz.t3, tq.t5} + f(max{t1 ,t2,t3, 1/2.(t4 + t5)})
1+ pty ’

g(tl,...,ts) =
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where p > 0 and f : R} — Ry, non-decreasing and upper-continuous with
J(t) <tforallt>0.

H;y: Obviously.

Hy: g(u,0,0,u,u) = P /() o ”1"_,2_:,:‘ =u for u>0.

14pu
1
Hs: If w < g(v,v,u,u + v,0), then v < pw+f(ma1x4{.:;v'2(u+v)}. Ifu>o,

then u < ”“;’I%ﬁ < ’"l‘f;,“ = u a contradiction. Then u < v. Thus there exists
hy € [0,1) such that u < hyv. Similarly if v < g(v,u,v,0,u + v) there exists
hy € [0,1) such that u < hgv. Therefore, u < h.v, where h = max{hy, hy} < 1.

Remark . There exists function g € H which is decreasing in variables
to or 13.
Example 4.
btyts
2+t3+1

]2,

g(t1, ... ts) = [at? +

where a > 0,0 >0and a+ b < 1.

Hy: Obviously. g is decreasing in variables ¢z and 3.

H,: g(4,0,0,u,u) = {/(a+b)u < uforu>0.

Hs: If u < g(v,v,u,u+v,0), then u? < a.v? and v < a%.v = h.v, where
h=ar<1.Hfu< g(v,4,v,0,u+ v), then u < h.v, where h = a% < 1.

The following theorems are recently proved.

Theorem 2. ([6]) Let S and T be self mappings of a complete metric
space (X, d) satisfying the inequality

d(Sz,Ty) < a max {d(a:, v),d(z, Sz),d(y, Ty),

L (d(a, Ty) + d(y, 52)),b /&, Ty)d(y, 52)}

for all z,y in X, where 0 < a<1andb>0. Then S and T have a common
fized point. Further, if a.b < 1, then the fized point is unique.

Theorem 3. ([7]) Let S,T,I and J self mappings a complete metric
space (X, d) satisfying the conditions:

1° T(X) Cc I(X) and S(X) C J(X),

20 One of S,T,I and J is continuous,

30 S and T weakly commute with I and J, respectively,

4° The inequality

[ + p.d(Iz, Jy)ld(Sz,Ty)
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< p.max{d(Iz, Sz).d(Jy,Ty),d(Iz,Ty).d(Jy, Sz)}

+ g(max{d(Iz, Jy), d(Iz, 52),d(Jy, Ty), 5 (d(T, Ty) + d(Jy, 52))})

holds for all x,y in X, where p > 0 and g : Ry — R4, nondegecreasing and
upper semi-continuous with g(t) < t for all t > 0, then S,T,I and J have a
common fized point z. Further, z is the unique common fized point for S and I
and T and J.

Theorem 4. ([5]) Let A,B,S and T be self mappings of a complete
metric space (X, d) such that

a) A(X)CT(X) and B(X) C S(X),

b) One of A,B,S and T is continuous,

¢) A and B are compatible with S and T, respectively,

d) The inequality

[d(Az, By))? < ¢;. max{d*(Sz,Ty),d*(Sz, Az), d*(Ty, By)}

+ c2. max{d(Sz, Az)d(Sz, By), d(Az,Ty)d(By, Ty)} + c3d(Sx, By)d(Ty, Az)
holds for all z,y in X, where ¢; > 0,c2,¢3 > 0,¢c1 +2c2 <1l ande; +c3 <1,

then A, B, S and T have common fized point z. Further, z is the unique common
fized point of A and S and of B and T

The purpose of this paper is to prove some theorems which generalize
Theorems 1-4 for compatible mappings.

Theorem 5. Let S,T,I and J be mappings from a complete metric
space (X, d) into itself satisfying the conditions:

a) S(X)C J(X) and T(X) C I(X),

b) One of S,T,I and J is continuous,

c) S and I as well T and J are compatible,

d) The inequality

d(Sz,Ty) < g(d(Iz,Jy),d(Iz,Sz),d(Jy, Ty),d(I1z,Ty),d(Jy,Sz)) (2)

holds for all x,y in X, where g € H, then S,T,I and J have a common fized
point z. Further, z is unique common fized point of S and I and of T and J.

Proof. Suppose 2¢ an arbitrary point in X. Then since (a) holds, we
can define a sequence

{S.’L‘o, T:cl, S:vz, T:ta, ceey S.’L‘gm ng,,.H, .o } (3)
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inductively, such that Sa2, = Jaant1, T®2n41 = [¥ong2 for n = 0,1,2,....
Using inequality (2), we have

d(Sl'zm Tﬂ:‘ln-}-l) < g(d(I-'v'Zn, Ja"2n.+1)1
d(IZan, ST2n), d(J22nt1, T¥2n41), d(T 220, T¥2n41), d(J 22041, ST20))
< g(d(Tw2n—l ) S.’L‘z,,), d(TmZn—l ’ SX2n.), (I(S.’L'g,,, T-""‘)n+1)’
d(Tz3n-1,5%2n) + d(ST2n, T22n41),0).
By (H,) we have

d(Szan, T22n+1) < hd(Tx2n41, S22n)-
Similarly, by (H) we have
d(S2n, T22n-1) < h.d(S2n-2, S¥2n)
and so
d(Szan, T22n+1) < (h)*".d(Sz,Tx1) for n=0,1,2,....

By a routine calculation it follows that the sequence (3) is a Cauchy sequence.
Since X is complete, the sequence (3) converge to a point z in X. Hence z is
also the limit of the sequence {Sz2,} = {J2an41} and {Tx2,-1} = {I22.} of

(3)-
Let us now suppose that I is continuous, so that the sequence {IS2,}
converge to Iz. We have

d(SIzan,Iz) < d(STxgn, [S22,) + d(ISx2n, I2).

Since I is continuous and S and I are compatible, letting n tend to infinity it
follows that the sequence {SIz2,} also converge to Iz. Using (2) we have

d(SITzn, T2an41) < 9(d(I*220, JT2041),

d(I2$2'm SI‘L'Zn), d(Jw2n+11 Tx2n+l), d(szmn T$2n-i-l)1 (I(J$2n+la 51(3211))-

Letting » tend to infinity and since g is upper semi-continuous, we have
d(I1z,z) < g(d(1z,2),0,0,d(1z,z2),d(1z,z)).

By (H2) we have d(Iz,z) =0 and so Iz = =.
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Further, by (2) we have
d(SZ, Ta"2n.+1) S .(I(d(IZ, J$2n+1),

d(I1z,52),d(J 22041, T¥on41), d(12, TT2n41), d(J 22041, 52))

and letting n tend to infinity we have
d(Sz,z) < ¢(0,d(z,5%),0,0,d(z,5z))

which implies by (H;) that z = Sz. This means that z is in the range of §
and since S(X) C J(X), there exists a point u in X such that Ju = 2. Thus
d(z,Tu) = d(Sz,Tu) < g(d(Iz,Ju),d(1z,S8z),d(Ju,Tw),d(Iz,Tu),d(Ju, Sz))
= ¢(0,0,d(z,Tu),d(z,Tu),0) which implies by (H,) that z = Tu. Since Ju =
Tu = z by Lemma 2 it follows that TJu = JTu and so Tz = T'Ju = JTu = J=.
Thus from (2) we have
d(z,Tz)=d(52,T=z)
< g(d(I1z,Jz),d(1z,5z2),d(Jz,Tz),d(12,Tz),d(Jz,52))
= g(d(z,Tz),0,0,d(z,Tz),d(2,Tz))

and by (H;) z = Tz = Jz. We have therefore proved that z is a common fixed
point of S, T, I and J. The same result holds if we assume that J is continuous

instead of I.
Now suppose that S is continuous. Then the sequence {SIx2,} converges

to Sz. We have
d(I8%2,,S2) < d(ISTan, STs,) + d(STxgn, S2).

Since S is continuous and S and T are compatible, letting n tend to infinity, it
follows that {ISz2,} converge to Sz. Using the inequality (2) we have

d(S%22n, T2an41) < 9(d(I1S220, J22n41),
A(I8T2n, S*®2n), d(J 22741, TT2n41), AT ST 20, T2041), d(JT2041, S7220)).
Letting n tend to infinity and since g is upper semi-continuous, we have
d(Sz,2) < g(d(52,2),0,0,d(Sz,z),d(5z,z))

and by (Hz) we have d(Sz,z) = 0 and so Sz = z. This means that z is in
the range of S and since S(X) C J(X), there exists a point u in X such that
Ju = z. Thus

d(S?zan, Tu)
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< g(d(ISzom, Ju), d(IST2m, S%2n), d(Ju, Tu),d(IS 220, T1), d(Ju, S*@2n)).
Letting n tend to infinity, it follows that

d(z,Tu) < ¢(0,0,d(z,Tu),d(z,Tu),0)

and by (H,) it follows that z = Tu. Since Ju = T = z by Lemma 2 it follows
that Tz =TJu = JTu = Jz. ‘
Thus from (2) we have

d(Sxan, T2)

< g(d(ITan, J2), d(I2n, St2n), d(J 2, Tz), d(I22n, T2), d(J 2, ST2n)).
Letting n tend to infinity, it follows that

d(z,Tz) < g(d(2,Tz),0,0,d(z,Tz),d(2,Tz))

and by (Hy) it follows that z = Tz = Jz. This means that z is in the range of
T and since T'(X) C I(z), there exists u’' € X such that Ju' = 2. Thus from (2)
we have {
d(Sv,z) = d(Sv',T=z)
< g(d(Iv', Jz),d(I', Su'),d(J z, Tz),d(Iu', Tz),d(J z, Su')).

Thus \
d(S/, z) < g(0,d(z,54"),0,0,d(z,Su’))

and by (H;) we have z = Su' = Iu'. Since Su’ = Iu' = z by Lemma 2 it follows
that z = Sz = SIu' = ISu' = Iz, and thus z = Iz. We have therefore proved
that z is a common fixed point of S,T,I and J. The same result holds if we
assume that 7" is continuous instead of S. '

Now let w be a second common fixed point of S and I. Using inequality
(2) we have

d(w, 2) = d(Sw,Tz) < g(d(Iw, J ), d(Iw, Sw),d(J z,Tz), d(Iw, Tz), d(J z, Sw))
and thus |
d(w, 2) € g(d(w, 2),0,0,d(w, z),d(w, 2))

and by (H,) it follows that w = z. Then z is the unique common fixed point of
S and I. Similarly, it is proved that z is the unique common fixed point of T’
and J. ]

For f:(X.d) — (X,d) we denote Fy = {z € X v = flz)}



98 V. Popa

Theorem 8. LetI,J,S,T be mappings from a metric space (X, d) into
itself. If the inequality (2) holds for all z,y in X, then

(FINF;)NFs = (FrnFy)n Fr.

Proof. Let z € (FyN Fj)N Fs. Then
d(z,Tz) = d(Sz,Tx)

< g(d(Iz,Jz),d(Iz, Sz),d(Jz,Tz), d(Iz,Tz),d(Jz, Sz)
= ¢(0,0,d(z,Tz),d(z,Tz),0)

which implies by (H,) that ¢ = Tz. Thus (Fy N Fy)N Fs C (Fy N Fy) N Fr.
Similarly, we have by (Hp) that (Fyn Fy)n Fr C (FINFy) N Fs. L]

Theorem 7. LetI,J and {T;};en+ be mappings from a complete metric
space into itself such that
a) To(X) C I(X) and Ty(X) C J(X),
b) One of 1,J,Ty and T is continuous,
¢) The pairs (Ty,I) and (T3, J) are compatible,
d) The inequality
d(Tiz, Tiyr1y)

< g(d(IiE, Jy)a d(Iz’ T,':L'), d(Jya T't'+ly)’ d(I.’t, Ti+1?/), d(-]?/, 11,3:))

holds for each z,y in X,Vi € N* and g € H.
Then I,J and {T:}ien+ have a unique common fized point.

Proof. Follows from Theorems 5 and 6. "
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