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1. Introduction

Let X be a Banach space and X™* be the dual space of X. Denote by
B(X) and S(X) the closed unit ball and the unit sphere of X, respectively.
Denote by N and R the set of natural and real numbers, respectively. Let
(G, 2, 1) be a measure space with a finite atomless measure pu. Denote by L°
the set of all u-equivalence classes of real valued measureable functions defined
on G. I° stands for the space of all real sequences. For any subset A of X by
conv(A) (conv(A)) we denote the convex hull (the closed convex hull) of A.
Clarkson [5] introduced the concept of uniform convexity.

The norm ||.|| is called uniformly convez (write (UC)), if for each £ > 0
there is a § > 0 such that for z,y € S(X), inequality ||z — y|| > € implies

1
(1.1) I3 +n)ll <1-6.
For any = € B(X), the drop determined by z is the set
D(z, B(X)) = conv({z} U B(X)).

Rolewicz in [21], basing on Danes drop theorem [6], introduced the notion
of drop property for Banach spaces. A Banach space X is said to have the drop
property, if for every closed set C' disjoint with B(X) there exists an element
z € C such that

D(z,B(z))NnC = {z}.
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A Banach space X is said to have the Kadec - Klee property (or property
(H)), if every weakly convergent sequence on the unit sphere is convergent in
norm.

In [21] Rolewicz proved that if the Banach space has the drop property,
then X is reflexive. V. Montesions [16] extended this result by showing that X
has the drop property if and only if and if X is reflexive and the property (H).

Recall that a sequence (z,) C X is said to be-an ¢- separate sequence for
some € > 0 if

sep(zy,) = inf{||zn — Tml|| : n #m} > c.

A Banach space X is said to have the uniform Kadec - Klee property
(write (UKK)), if for each € > 0 there is a § > 0 such that if 2 is a weak limit
of norm one ¢-separate sequence then ||z|| < 1 — 4.

A Banach space X is said to be nearly uniform convez (write(NUC)) if
for each € > 0 there is a § € (0,1) such that for (z,) C B(X) with sep(z,) > ¢,
we have

conv({z,}) N (1= 8)B(X) #0.

It is easy to see that every (NUC) space has the (UKK), and every
Banach space with (UKK) property has property (H). Huff [9] proved that a
Banach space X is (NUC) if and only if X is reflexive and X has (UKK).

For any subset C of X, the Kuratowski measure a(C) of C' is the infimum
of those ¢ > 0 for which there is a covering of C' by a finite number of sets of
diameter less than €.

Goebel and Sekowski [8] extend the definition convexity replacing condi-
tion (1) by condition involving the Kuratowski measure of noncompactness.

The norm ||.|| in Banach space X is A-uniformly convez (write (AUC))
if for every € > 0 there is a § > 0 such that for each convex set E contained in
the closed unit ball B(X) such that a(E) > ¢, we have

inf{||z]| :z € E} < 1-6.

A Banach space X is said to have property (A) if for any ¢ > 0 there
exists a § € (0,1) such that

a(D(z, B(X))\ B(X)) < ¢

whenever < ||z|| < 1+ 6 (see [20]).

Very helpful for our considerations is the following equivalent form of
the property (8) (see [12]). A Banach space X has property (3) iff for any
€ > 0 there exists a § > 0 such that for every z € S(X) and each sequence
(zy) C S(X) with sep(z,) > ¢, there is an index k satisfying |22 < 1 - 6.
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Rolewicz [21] has showed that the property (8) follows from (UC) and
that the property (8) implies (AUC). It was proved in Kutzarova [24,25] that
property () is isomerphically different from UC and NUC.

Sum up the above discussion we have

(UC) = (8) = (AUC) & (NUC) & [(Rix) N (UK K)] = [(Rix) N (H)) & (D)

where (Rfx) denote the property of reflexivity. ,

A Banach space X is said to have normal structure if r(A) < diam(A)
for every non-singleton bounded subset A of X, where r(A) = inf {sup{||lz - yl| :
y € A} : z € conv(A)}.

It is well known that if X has property (8) then X* has normal structure
(see [11]).

A 2 € S(X) is said to be a local uniform point it for any sequence
(zn) C S(X) with limpco [|#n + || = 2 implies limp—co [|zn + 2| = 2 (see [22]).

A Banach space X is said to be local uniform convez (write (LUC)) if
every point on S(X) is a local uniform point (see [18]).

To study the relationships between (LUC) and property (8), D. Kutza-
rova and P.L. Papini introduced local property (8). They have obtained some
important results (see [10]). More generally, similar local properties were studied
in Kutzarova and Lin [26]. For details studying the relationship between (LUC)
and local property (8), we introduced the concept of -point. In this paper, we
have got that there exist some Banach space with local property (8 ) are not
(LUC).

A z € §(X) is said to be B-point if for any £ > 0 thereis a § = §(¢,2) > 0
such that for any sequence (z,) C S(X) with sep(z) > ¢, we have | Zt2)| < 1-6
for some index k.

It is obvious that a local uniform point is a 8-point.

A Banach space X has local property (8) (for short L(/)) if and only if
every point on S(X) is a B-point (see [10]).

A map ® : R — [0,00) is said to be an N-function if ® is vanishing only
at 0, even, convex, limy_o ﬂuﬁ)— = 0 and limy— e ﬂ“ﬁ)- = oco. Let p(u) be the
right-side derivative of ®(u) and p_(u) be the left-side derivative of ®(u). For
every Orlicz function ® we define the complementary function ¥ : R — [0,00)
by the formula

¥(v) = sup{ulv| — &(u)}
u>0

for every v € R. The complementary function ¥ is also an N-function.
By the Orlicz function space Ly we mean
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= {x € L : Iy(cx) = / ®(ca(t))dp < oo, for some ¢ > 0}
G
and the subspace of the Orlicz function space
Eg ={z € L°: Ip(ca) = / ®(cz(t))dp < oo, for any ¢ > 0}.
G

Analogously, we define the Orlicz sequence space and the subspaces of Orlicz
sequence space by the following formula:

log = {z €l%: Ip(ca) = Z ®(cz(i)) < co for some ¢ > 0}
i=1 oo
and he = {2 €1%: Ig(cz) = E ®(cz(i)) < oo for any c > 0}.
i=1
Lg(lg) are equipped with so called the Luxemburg norm:

lz|| = inf{k > 0: Iq,( )< 1}

or equipped with one equivalent norm
1
0 _ 3 el A
(1.2) l2l° = inf {(1 + To(ke))}

called the Orlicz norm. To simplify notations, we put Lo = (Le,|| ||), lo =
(o ll 1), 28 = (Zas I [0, 1% = (o | [9).

For z € LY (or {3) a.nd x # 0, we denote kX = inf{k > 0: Iy(p(k|z|)) >
1}, k2* = sup{k > 0 : Iy(p(k|z])) < 1} and Ix(z) [k%, k3*]. It is well known
lz]|° = $(1 + Ta(k)) iff k € K(z) (see [3]).

We say that the Orlicz function ® satisfies Az-condition (@ € Agz, for
short), if there exist constants & > 2 and up > 0 such that

®(2u) < k®(u) for |u| > uo (or |u| < up in the case of sequence space).

We say that the Orlicz function ® satisfies Va-condition (® € Vg, for
short), if its complementary function ¥ satisfies Aj-condition.

We say that a interval [a, b] is an affine interval of @, if

820 = La(a) + 2(), 8“1 < S(B(a—e) + 2()
a+b+e

and & ) < E(Q(a) + ®(b+¢)), for any € > 0.

We say that a pomt x is strictly convez point of ®, if v = %(u + v) and
u # v imply ®(*42) < L(®(u) + &(v)).

For more details of Orlicz spaces, we refer to [3], [17] and [19].
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2. Results

Theorem 1. A z € S(I3) is a § point if and only if:

(1) S A2a
(2) ® € V..

Proof. Necessity.
(1) For convenience, we introduce the following notion

[2]™ = (0,...,0,z(n + 1),...,2(m),0,0,...)

for any = € S(I3) when m > n.
Suppose that ® ¢ A,;. We will consider the following two cases:

Case I: = ¢ S(h}).

In this case we have lim;_ ||[z]$°||° = d(z,h}) = d > 0.

Denote ig = 0. .

Since [|[2]°[|° > d, there is é1 > o such that ||[z]32[|° > d.

Since “[:L]°°||° > d, there is i3 > iy such that ||[:L]"[|° > d; etc.

In such a way, we get a sequence g < #; < i3 < ...such that ||[:z:]‘" A° >
d (n=1,2,.:2.

Now, let us consider the sequence glir (n = 1,2,...). It is obviously
Nl ll® — [l2]® = 1 (n — o0) and [zl — [0 > &l [0 > d for any
m > n. But

lle + [=1"11° 2 2ll[=]"1I° — 2.
This contradiction shows that ® € A,.

Case II: z € S(hY).
Take & > 1 such that

1= [lell® = 21+ Ta(ka)).

Take z € S(I3 \ h}) such that Ip(z) < oo and d(z hg) = d > 0. By the same
arguments as above we have ig < 4; < i3 < ... such that ||[7,]"‘ A°>d, (n=
2,...). Put

ok = (@), g 2liney), nmt 3D Honot D) 200) oy 41 0, )

By [|2a[l® > llle]g™"[I° = ll2[|° = 1 and

p—

leall® < (1 + To(kz) + 2: N(OD—MW+— §: ®(2(i)) — 1,

t=ip—1+1 i=ip-1+1

?-
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we get limp—oo [|2al|° = 1. Take no such that ||[z]5° ||° 35 thanks to = €

S(hg). Then,
/

[|lZm — za]|° > ||[z]'"“||0 [z ]'"+’||° — — — = — whenever m > n > ng.

But ||z, +2||° > 2||[1,]’""‘|| — 2||z]|° = 2. This contradiction shows that ® € A,.

(2) Otherwise, we assume that & ¢ V3, i. e v g A2 It is easy to find a sequence
Un = [y,.]," , € hy such that Ty(yn) < Land F5 <llmmlle < (n =1,2,...).
Since y, € hy, there are a sequence z, G S(hy) such that z, = [:z:]:::_1 and
(T, ¥n) = llnlle for n = 1,2,.... Obviously, ||lzn — Zm|l® > ||za||® = when
m # n.

Using of ® € A, there exists a y € S(ly) such that y is a supporting
functional of 2. Put

n . . s . p
Zn = m(y(l), cesny y(‘ln-—l), yn.(zn—l +1), ey ?/n(’n"' 1)’ y(171+1)’ y(1n+2), M ')'

Then

o) < s (Ta(0) + Fo () < g (14 ) = 1.

Hence
"xn + z"o 2> (x + z,, Z,.)

_1—};(<xn,yn>+<x,y>— 3 OIS+ (D)

i=ip—1+1

n n o
> (1= sl e + lmlle) = 2
This means that = is not a B-point. So, we get ® € V.
Sufficiency. For any z¢ € S(I3), we are going to prove that it is a

[B-point.
Suppose that a sequence (z,) C S(I3) with sep(z,) > € for any given

€>0.
Take a sequence kj, > 1 such that

(2.1) 1= |lea|l® = 1.-1_,,(1 +Ia(knzn)) (n=1,2,....)

Since ® € V,, we know k = sup{k, : n =1,2,...} < co.
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By ® € V; again, there exists 6 € (O, 1) such that

22)  S(—n )< (-0 ellnn@) (1=1,2..)

k0+ 2

whenever |z,(i)| < ®71(1).
Using ® € A2, there is § > 0 such that

(2.3) . lz||° > % implying Ig(z) > 6.
Using ® € A, again, there exists io € N such that
koB6
(2.4) D ®(2kowo(i)) < °

1>1g

Passing a subsequence, if necessary, we may assume that lim,—.o (%) = a; for
i=1,2,.... Hence there is ng € N such that

(2.5) _ll[z,,]o — [zm]|I° < 5 when n,m > no.

So,
< llon — 2l < 2ol = [2nI1° + a5 1° + am]51°
&
< 5+ lanlI° + Nzl

for any n,m > ne.
Therefore, there exists at least one element in {2,}, without loss of gen-
erality, we may assume that it is 2, such that ||[z,]]|° > §. It follows from

(2.3) that
(2.6) Ie([z.]) = Z B(zn(i)).2 6

1=ig+1
Using the convexity of ®(«) and (2.2), (2.1), (2.6), (2.4) we have

|z + zo||® £ kn + "0{1 + E <I>(k + k (zn(3) + 20(2)))

oo kn
D D e s L BT S )
i=i0+1

kn+ ko k2 + ko + ko

k + ko{l + Z (I,(k (a:,.(z) + z0()))
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S btk k :
+Z 2 Zq)( 0 knxn(z)"' [y

Btk ®(2kozo())}

kn + ko L ko e o (3 kn e (7
< Bl Y B+ boneld)

knk k
k, + 2k0 2ko
+ 2}21‘ +2I~0 0)(k T 2ko (P(I"n'l'n( ))
i1=ig
+-k—-tI>(2k T (z)))}
2%, +2kg 000
—(1 + Z B(knzn(i))) + —(1 + Z ®(koxo(7)))
=1
f 1
_;‘7—: ‘ Z Q(kn.’b'n(i)) + 2—k- . Z @(2’90.’1?0(1))
1=tp+1 i=ig+1
65 166 06
< 0 B e e — e,
el + llzol® = 7 + 37 =2 - 57
Because k, § and 8 are independent on choosmg {zn}, we get that 2 is a S-point.

Corollary 1.  Orlicz sequence space 13 has L(B) if and only if ® €
A NV,

Theorem 2. A zo € S(L3) is B-point if and only if:
(1) ®ecA;NV,
(2) For any affine interval a,b] of ® and k € K(z), we have

p{t € G : k|z(t)] € (a,0)} = 0;

(3) (i) if a left endpoint of affine interval a,b] of ® with p_(a) = p(a),
then
pit € G Kla(t)] = a} = 0;
(i) if b is right endpoint of affine interval a,b] of ® with p_(b) = p(b),
then
p{t € G : k|z(t)| = b} = 0;

(4) (i) if a is left endpoint of affine interval a,b] of ® with p_(a) < p(a)
and p{t € G : k|lz(t)| = a} > 0, then Iy(p-(kz)) = 1.
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(i) If b is right endpoint of affine interval a,b] of @ with p_(b) < p(b)
and p{t € G : k|z(t)] = b} > 0, then Iy(p(kz)) = 1.

Proof. Sufficiency. In this condition, 2 is a local uniform rotund point
thanks to Theorem 2 of [22]. Hence, x is 3-point.

Necessity. For convenience, without loss of generality, we may assume
that z(t) > 0,i.e. t € G.

(A) Using the same argument as the proof of Theorem 1, it is enough to
prove that the condition (1) holds.

(B) If the condition (2) does not hold, there exists an affine interval a, 0]
of ® and k € K(2) such that p{t € G : kz(t) € (a,b)} > 0.

Take ¢ > 0 small enough such that uE = p{t € G : kz(t) € [a+¢,b—¢]} >

0.

Divide E into two substs E! and E} such that uE} = pE}, EfnE; = 0,
ElUE} = E;

Divide E} into two substs E? and E3 such that B} = pE3, EfnE = 0,
E?U E2 = E};

Divide E2 into two substs E2 and E2 such that uE? = pE},E3nE} = 0,
E2 U E4 = Ez, etc.
Divide EL' into two substs Ey,_, and EZ; such that pE3_, = pEj,E5 N
E3. =0, E}_ lUIZ'k—E“_l, etc. (n=2,3,...;k=1,2,...,2"71),
Put
z(t) teG\E
za(t) = x(t)—F tE€ VT ER , for i=1,2,...,2"1,(n=2,3,..)
a(t)+§ teUL B
Obviously, ||z, — :vm||° 2eEg-1(LE) for m # n.
For any 0< < §,

Ty(p(1 + mkzn)) 2 Tu(p((1+ Mk2)) 2 1
Iy(p(1 = n)kza)) < Te(p((1 - n)ke)) < 1.

So we have k € K(z,) (n=1,2,...). Then

n 1
™0 = (1 + Lo(ka))

2n—l

= 11+ Ta(kaxars) + 3 /E B(ka(t) — £)dt + /E  0ke(0) + )i}

=1 211
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2n—1

1

= 20+ To(kexae) + Yo( [ @(ke()dt = eplanBgiy
=1 2!—!

+ ®(kz(t))dt + ep(a)uEy;)}

= 2+ To(ka) = fl2|® = for n=1,2,...

Using the same argument, we get k € K(%2t2) for n = 1,2,.... Then

1222 = 2+ L2t D))
= M1+ Tokaoxa) + [ a2 LR

%{1 + I‘P(kxXG\E) + / B(kz(t)) 'Z‘p(ka:,,(t))dt}

llzl1° + llznll°

S+ Ta(ka) + 52 (1 + To(kza)) = BT

=1,

which leads to a contra,dlctlon.

(C) Now, we are going to prove that (i) in the condition (3) holds. If
there exists a, it is left endpoint of affine interval a,d] of ® with p_(e) = p(a)
such that uF = p{t € G : ka(t) = a} > 0.

Let {EP}?, be a partition of the E as (B) in the above proof.

Put
z(t) teG\E
za(t) = { i_: te U?:lif?,’,‘,_l for i=1,2,...,2"1 (n=2,3,...)
13 te U?—l 2:

For any 1 > 0, we have
Iy(p(1 — n)kza)) < Te(p((1 — Mkzxa\e)) + Y(p((1 - 7)b))uE

< Iy(p-(kzxo\E)) + ¥(p(a))pE
= Iy(p-(kzxo\E)) + ¥(p-(a))nE = Ty(p-(kz) < 1.

So, we get k € K(z,) (n=1,2,...).
Clearly, ||z4]|I° = ||z||° for any n,m = 1,2,.... So k' = k|z,]|° €
K("f'np-) forn=1,2,...
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Denote 2
Ln

2, = — =1,2,...).

" T h)

Then z, € $(L}) and for any m,n € N with m # n

b—a pE b-
— a0 = g-1
llzn = zmll” = k|| 2|l 2 (;tE) 2k (;tE

Notice that
./

R o(t) + 2a(1) = k() + e K2 (2)
Etr il Zn [ T Ey ko on

kz(t) teG\E
= a teU?.'_'I‘E;,_l for n=1,2,...
et HEb e U.’fl’ﬂz.
It is easy to prove that > € K(x + 2,) for n = 1,2,.... Hence
kE+ K kK
"x + anIO L’\" (1 + I‘b(l\, + ’\.’(x + “13)))
k+E k

= BXE 1+ (kaxors) +/ <1>(k Fka(t) + K en())dr)
k+ K E: kL

= E(l + Ip(k2)) + P(l + Is(K'z,)) = 2.

This contradicts with that 2 is a S-point. Using the same method we can prove

that (ii) of the condition (3) also holds.
Next, we will prove that (i) of the condition (4) holds.

(D) Otherwise, there exists a, it is left endpoint of affine interval a, b]
of & with p_(a) < p(a) such that uE = p{t € G : kz(t) = a} > 0 and

Iy(p-(kz)) < 1.
Notice that

Ty(p-(kzxe\5)) + V(p-(a))pE < 1.

If Iy(p-(kzxe\i2)) + ¥(p(a))puE < 1, then we let E = E;
I Iy(p-(kxxe\g)) + U(p(a))uE > 1, then we take £ C E such that
KE > 0 and Iy(p-(kzxe\E)) + ¥ (p(a))pE = 1.



112 T. Wang, Y. Cui, Ch. Meng

Let {EP}2, be a partition of the I as (B) in this proof of Theorem 2.
For any n > 0, we have

Ty (p(1 + n)kzn) > Te(p(1 + n)kz)) > 1;

Lu(p(L = )kaw) < To(p-(kexere)) + L ((@)RE <,

ie k€ K(z,)forn=1,2,...

By the argument as above, we can finish the proof of (4). Here omit the
later procedure of the proof. ]
Corollary 2. Orlicz function space LY has L(B) if and only if:

( 1 ) ® e AN Vo,

(2) ® is strictly convez on the whole line.

Denote by {a;}7, and {b;}%; (m is finite or infinite) the set of left
endpoint and right endpoint of all affine intervals of ®, respectively.

Theorem 3. A z € S(Lg) is B-point if and only if:
(1) ® € A,
(2) For any affine interval a,b] of ®, we have

p{t € G:|2(t) € (a,0)} =0

(3) u{t € G : |2(t)] € {a;}} =0 and ® € Ay or p{t € G: |2(t)| €
{b:}} = 0.

Proof. Sufficiency. In this conditions,  is an UR-point thanks to
Theorem 2 of [23]. Of course, 2 is a S-point.

Necessity.
(A) If the condition (1) does not hold, the Ly # Eg. We consider two

cases:
CaseI: = ¢ Ep. Then we have limp_. [|2X6\G, || = d(2, Eg) = d > 0, where |
Gn={teG:|z(t) < n}.

Since ||z|| > £, there exists Gn, C G such that ||zxa,, || > g

Since ||z XG\Gn, Il > £, there exists Gy, D Gy, such that ||exg, \an, || >
d.
3 etc.

In such a way, we can get a sequence {G,}32, of subsets of G such that

d ;
Gn; C Gp,y, and ||xxgn',+l\G"', [l > 3 for i=1,2,....
Obviously, limy~co [[2Xay, | = llz]l = 1 and

lim ||z + zxg,, || 2 2 lim_[lzxa,, || = 2.
n—oo n—oo
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But
d . -
lexen, = 2XGu, | = lexan\Gu, | > 8XGn,,, \u; |l > 5 for any i > j.

Case II: z € I’g. Take x ¢ Eg such that Is(z) < oo and d(x, Eg) = d > 0.
Repeat the procedure of the above method, we can get a sequence {Gy,;}$2,
of subsets of G such that

d ;
Gn; C Gy, and ”"7XGn,~+1 \G; Il > 3 for i=1,2,..

Put
)= 2(t) t€(G\Gniyy) UGy i=1.9
¢ 2(t) 1€ Gniyy \Gr; [

Then [|z]| > |l2xG,, || = l|z|l = So, we have lim;_.o inf ||| > 1. Since
I (2i) < Ia(2) + lo(xXxG\G,, ) = Ta(2) = 1, we get lim;_.o, sup ||zi|| < 1. Hence,

lim;_,co ||2i]| =. Because of z € Eg, we can take ig € N such that ||2xg,, || < §
when i > ip.
So
d d d
“2i - 2‘7” Z ”(.’L‘ - z)XG"i+l\G“v' “ 2 ”a:XG"H-l \G"i ” - ”zXGn.'-{-l \Gn.' ” > 5 - Z = 4—1

when j > 7 > ig.
It is obviously that

2+ zill 2 2ll=xGn, | = ll2ll = 2.

This contradiction shows that the condition (1) holds.

(B) Suppose that there exist an affine interval a,b] of ® such that u{t €
G :z(t) € (a,0)} > 0.

Take ¢ > 0 small enough such that uF = p{t € G : 2(t) € [a+e,b—¢]} >
0.

Divide E into two subsets E] and Ej such that pE] = pE}, E}nE} = 0,
El U El = E;

Divide E] into two subsets E7 and E? such that uE? = pE2, E2nE3? = 0,
E2U EZ = E}; .

Divide Ej into two subsets 3 and E} such that pE2 = uE?, E2nE3? = ),
E2U E? = E}; etc.

Divide E,’:'l into two subsets Ef._, and E2* such that u 2k—1 = MEZ,
E3 _NE} =0, ERUEY_ = EF™Y etc. for (n=2,3,...;k=1,2,...271),

Put
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z(t) te G’l\ E

za(t) = z(t)—€ te€ u?ﬁl B . n= 2,3,
3’(t) +¢€ te Us—l D2l

Then

2"—1

Ta(en) = To(exavs) + ([ 8@ =i+ [ 20+ e

i=1 B}y

2”—1

= Ia(exoe)+ ([ @)dt-ep@uBgioit [ @)dt+epayuEs)

=1 2i—-1 23
=Igp(z)= for n=1,2,....

So, we get ||z,|| =1foralln € N.
Since

z(t) + an(t)
———2——)dt

Tpn+ T, :c
Io(2222) = Ie(axane) + [ %

- Is(exos) + /E <I>(:t(t))+2 B(za(1) ,, _ Lo(2) +2 Is(za) _ ,

So ||zn + z|| = 2. But,

2
[|lZm — zn|| = 28‘1’_1(#—E-) for any m # n.

This shows that z is not B-point, which leads to a contradiction.

(C) K the condition (3) does not hold, there are the following two cases.
Case I: There exist a € {a;}%, and b € {b;}2, such that

uE = p{t € G:2(t) = a} > 0;

and puF=pu{teG: a:(t) = b} > 0.

Take b > a and @’ < b’ for which [a,b] and [@/, b’] are affine intervals of
with

®(b) — ®(a) = ®(V') — ®(a’).

If uE < pF we take subset of F', we still denote it as F', such that pE = pF.
Let {EP}?, and {FP}¥, (n=1,2,...) be a partition of the E and F as in
the proof of Theorem 2, respectively. -

Put
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z(1) teG\(EuF)
¢« teUX'Ep_,
za(t)=4{ 0 te U ER, (n=1,2,...)
o teUL]FR_,
o teUd ' Fp
Then Io(2n) = To(2xo\(5um) + (B(a) + B(0)) 57 + (B(a) + B(K) 4
= Io(xXa\(BuF)) + B(Q)RE + B(V))uF = 1

So, |lza]| =1 (n=1,2,...). Similarly,

a+b prr

) Z 4 e(b)5-

= Ip(zxc\(EuF)) + ‘I’(a) + ®( 3

= In(exe\mum) + (G 8(a) + 32(0) + S3() + gé(a'))%

= Ia(axenEum) + (5(8(a) + B(1) + 3(2(0) + 2@ = Io(z) = 1

ie., ||zn — m|| = 2. But,
1, 2 '
[|zn + || > (b—a)® (u_E) for any n # m.

So we prove that Case I does not exist.
Case II: There is a b € {b;}!2, such that u£ > 0 and & ¢ V,, where E = {t :
z(t) = b}.

Since ® ¢ V,, there exists a sequence u, T oo such that .

(%) > (1- 220 (h o9,

Take € > 0 satisfying b — € € (a,b) and a sequence {F,,} of subsets of E such
that F, N F, =0 (n=1,2,...;m # n).

Take a subsequence of {u,}, we still denote it as {u,}, for which ®(u, —
b)uFy, > ep_(b)uE.

Choose a subset E,, of F,, such that ®(u, — b)uE = ep_(b)u(E,) (n =
1,2,...).

Obviously, lim, . pE, = 0.

Put
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2(t) teG\E
z,(t)=8 b—¢ teE\E, (n=1,2,...)
Uy — b te E,

Then Ia(zn) = To(zxa\g) + B0 — EYU(E\ En) + B(utn — b)u( En)
= Io(Iazxa\g) + (B(b) — ep-(D))u(E\ En) + ep-(D)pE
— Ia(aXo\s) + BOU(E) = la(z) = 1 (1 — o0).
So, ||zn|| — as n — oco. Similarly,

Tz, +
I ( "2

) = To(exc\B) + 86 — SIA(E\ Bn) + S(FIu(En)

> Io(axans) + (B(0) - Sp-E)u(E\ B + (1 - 1) 202)u(m,)

n
Ll

> Io(2x\) + (2(6) — Sp-(O)W(E\ En) + (1 - n)@(un - ;);L(E,,)

— Ia(axe\8) + B(O)(E) = Ta(2) = 1.

So, ||2atZ|| — 1 as n — oo.
Since ® € A,, there exists § > 0 such that

|o(w) - Io(u — )| < Sp-(O)uE

whenever Ig(u) = ep_(b)nE and Ig(v) < 6.
Using lim,, oo ®(b — €)pEy = 0 there is ng > 0 such that

&(b—e)pE, < when n > ng.

Hence,
Ig(zm — zn) > B(un — b) — (b—€))uk,

> ®(un = D)uEn — Zp-(BUE
= %p-(b)pE for any m > n > no.
Using ® € A, again, there exists §; > 0 such that
[|Zm — zn|| > 61 for any m > n > ne.

The proof is finished. =



Local Property () in Orlicz Spaces 117

Corollary 3. Lg has local property 3 if and only if & € Ay and ® is
strictly convex in the whole line.

Theorem 4. A 2 € S(lg) is a B-point if and only if:
(1) ® € A,
(2) {i € N : |2(3)| € (a,b)} = 0 for any interval [a,b] of ® or & € V,.

Proof. Necessity. The proof is similar to Theorem 3 and so we omit
it.

Sufficiency. Without loss of generality, we may assume z(¢) > 0, (i=
1,2,...).

For any 29 € S(lg), we are going to prove that it is a B-point.

Suppose that a sequence (2,) C S(lg) with sep(z,) > £ for any given

e > 0.
Now, let us consider two cases.

Casel: ® € A, NV,.

Since ® € A,, there is 7 € (0,1), such that
(3.1) flul| > g- = Ip(u) > 7.
Since ® € Vg, there is 0 < # < 1 such that

(3.2) 2(3u) < (1~ 0)2a(u),

whenever |u| < ®-1(1). :
Using ® € A, again, there exists 0 < £ < 1 such that

0
(3.3) L@w<1-T-=|ul<1-¢
Notice that I(22) < oo thanks to ® € A,, there exists ip such that

(3.4) > o(22(i)) < o7

1>19

Passing a subsequence, if necessary, we may assume that lim, _ o Znlt)=1a; (=
1,2,...).
Then there is ng € N such that

. . 6
zalg — [Em]Rll < = when m > n > ng.

3
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So
7 i oo €
£ < ||lzn—@mll < l[zale’ — [2m]e |+ [zal8° |+ l[2m]S°ll < 5+ 2l + I zm]El

From the above inequality, we obtain that there at least exists one element
in {z,}, without loss of generality, we may assume that it is 2, such that

llza]S N 2 §

It follows from (1) that we get

(35) 3 @(en(i)) = To(f2al) 2 7.
i=io+1
Combining (3.2), (3.4), with (3.5), we get
ro(2 1) = Z@(”’"(’)’”‘(’)) + > 032+ J20(i)

f=1 t=ig+1

Zé(zn(i))+q’(m(7))+ E( Q( a:,,(z))-!- <I>(2'z,(z)))

=1 i=ig+1

2 E <I>(:v,,(1))+ P(2(2)) Z (= (1 0)®(z,(3)) + ‘1’(23(1)))

=1 i=ip+1
Is(z,) + Ip(z) 6 >
< t1a@) 0 S* s+t Y ee)
t=19+1 i—to+l
<1- o—T + 0—T -1-4

4
Using (3.3), we obtain ||z, + z|| < 2(1 - f).
Case II: ® € A, and {i € N : |2(%)| € (a,b)} = 0 for any interval [a, )] of ®.
Since ® € A,, there is 7 > 0 such that ’
(3.6) Nl > % = Ip(u) > 2r.

Since Ip(u) = 1, there is #g such that

3.7) ZQ(:&:(:))< L

i>1p
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For z(i) with a(¢) > m, noticing that z(7) € U(«, ], we have

Q(a,(z) + u) & <I>(n:(z'))2+ o(u) when u < z().
So, there exists a 6; € (0, 1) such that
(:z:(z) -+ u) <(1- 6£)<I>(.'v(i))2+ d(u)
when r
I’U,l < :L‘(l) - m (1 = 1,2,...).

Take § = minj;<i<i, 6;, Then

:c(i) +u ®(z(i)) + ®(u)

(3.8) a( )< (1—-96) >

holds for |u| < () — W’ where 7 € {i < ip:2(¢) > W}
Using ® € A, again, there exists 0 < £ < 1 such that
T

é
(3.9) Ip <1- Q(——E-l—('i')—)') = ||u|| <1-

Since sep(z,) > ¢, there always exist z, for which ||z, — 2|| > §. Take
use of (3.6), we get Ip(z, — z) > 27.

Denote Nt = {i € N : 2(i) > |zn(i)|}.

Notice that ®(b — a) < |®(b) — ®(a)| and Ig(zy) = Ie(2) =1,

27 < Ip(n — @) < ) [8(2a()) — B(2(i))|

i=1

= Y (@=(E) - @+ D (B(za(i) — B(2(3))

iEN+ {EN\N+
=2 3 (8(2()) - B(za(3))).
iEN+
From (3.7), we get ;e n+,ivio (B(2(8) — B(2n(i)) < Xisi ‘p(z(’)) <%
5 < Y (3(=(i) - @(2a(d)))

1EN+,i<io

< Y @) - lea()p(()

iEN+,i<io
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<p(@7'(1) Y (2() = lza(D))
ieEN+,:<ip
Hence, there at least exists one i’ < ig such that 2(:’) — |x(¢')] > Tor(@=T)"

Using (3.8), we obtain

2
Therefore
1 Iq,(x"; 'v) _ I¢(mn)2-i- Iy(z) Iq>(a:"; :c)
_ Z;(‘P(wn(i));- P(x(3)) <I>(x"(i)2+ -T(i)))
®(an (i) + 2(2(7)) zn (i) + 2(i')
> . e

> S@an() + () 2 §BE() > ¥ Gy

ie., Ip(Zt2) <1 - %Q(m)' We get ||z, + || < 2(1 — £) that follows
from (3.9).
Thus, the proof is finished. A ]

Corollary 4. Orlicz sequence space lo has L(B) if and only if:
(1) ® e Ay,
(2) ® € SC[0,971(1)] or @ € V.
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