Mathematica Balkanica

Mathematical Society of South-Eastern Europe
A quarterly published by
the Bulgarian Academy of Sciences – National Committee for Mathematics

The attached copy is furnished for non-commercial research and education use only. Authors are permitted to post this version of the article to their personal websites or institutional repositories and to share with other researchers in the form of electronic reprints. Other uses, including reproduction and distribution, or selling or licensing copies, or posting to third party websites are prohibited.

For further information on Mathematica Balkanica visit the website of the journal
http://www.mathbalkanica.info
or contact:
Mathematica Balkanica - Editorial Office;
Acad. G. Bonchev str., Bl. 25A, 1113 Sofia, Bulgaria
Phone: +359-2-979-6311, Fax: +359-2-870-7273,
E-mail: balmat@bas.bg
Strengthened Cauchy Inequality for Bilinear Forms over Curved Domains. Cubic Case

Todor D. Todorov

Presented by Bl. Sendov

The strengthened Cauchy - Buniakowskii - Schwarz inequality for elliptic bilinear forms over curved domains and 10-node 2-simplex elements is considered. It is proven that the inequality holds uniformly with respect to the finite element spaces. The results have applications in multilevel method for solving elliptic boundary-value problems. Upper bound for contraction number is found.

AMS Subj. Classification: 35J25
Key Words: Cauchy - Buniakowski - Schwarz inequality, elliptic bilinear forms, finite element spaces, elliptic boundary-value problems

1. Introduction

Let U, V be two linear finite-dimensional spaces, $U \cap V = \{0\}$ and let there exists a constant $\gamma \in [0, 1]$ depending only on the spaces U and V, but not dependent on the choice of the elements $u \in U$, and $v \in V$, such that

$$|(u, v)| \leq \gamma \sqrt{(u, u)} \sqrt{(v, v)}.$$

The last inequality is the so-called strengthened Cauchy-Buniakowskii-Schwarz (C.B.S.) inequality. Among authors who have used the strengthened C.B.S. inequality in two-level method we mention Bank and Dupon [3], Braess [4,5], Maitre and Musy [10], Axelsson [1], and Axelsson and Gustafsson [2]. The inequality has been used in connection with the two-grid FAC-preconditioner by McCormick [12], McCormick and Thomas [13]. The C.B.S. inequality is applied in works of Bramble et al. [6] and Mandel and McCormick [11]. The role of the C.B.S. inequality in multilevel methods is considered in detail by Eijkhout and Vassilevski [9]. Computation of constants in the strengthened C.B.S. inequality we can find in [14]. Our goal is to study the behaviour of the
constant in the strengthened C.B.S. inequality for a class of 10-node curvilinear
triangle finite elements.

Let $H^1(\Omega)$ be the usual Sobolev’s space.

We consider an elliptic bilinear form $a(\cdot, \cdot)$:
\[
a(u, v) = \int_\Omega \nabla u \cdot \nabla v \, dx, \quad u, v \in H^1(\Omega)
\]
with $u, v = 0$ on $\Gamma_D \subset \Gamma = \partial \Omega$, $\text{meas}(\Gamma_D) \neq 0$. The set Ω is open subset of
\mathbb{R}^2, with Lipschitz - continuous boundary. We assume that Γ is piecewise $(P_3)^2$, where P_k is the space of all polynomials of degree, not exceeding k-th.

We denote the point (x_1, x_2) by x, and the vector with the same coordinates by \underline{x}.

Let $(\hat{T}, \hat{P}, \hat{\Sigma})$ be the 10-node 2-simplex finite element of reference (Fig. 1) defined as follows:
\[
\hat{T} = \{ (\hat{x}_1, \hat{x}_2) \mid \hat{x}_1 \geq 0, \hat{x}_2 \geq 0, \hat{x}_1 + \hat{x}_2 \leq 1 \} \text{ is the unit 2-simplex;}
\hat{P} = \hat{P}_3, \text{ where } \hat{P}_k \text{ is the space of all polynomials of degree, not exceeding}
\]
k-th on \hat{T};
\[
\hat{\Sigma} = \{ (\hat{x}_1, \hat{x}_2) \mid \hat{x}_1 = \frac{i}{3}, \hat{x}_2 = \frac{j}{3}; i, j \leq 3; i, j \in \{0, 1, 2, 3\} \} \text{ is the set}
\]
of all Lagrangian interpolation nodes.

Let $a_{iT}(a_{1iT}, a_{2iT}), \; i = 1, 2, ..., 10$ be the nodes of the element T, A_{F_T} be the matrix
\[
A_{F_T} = \begin{pmatrix}
a_{11T} & a_{12T} & a_{13T} & a_{14T} & a_{15T} & a_{16T} & a_{17T} & a_{18T} & a_{19T} & a_{110T} \\
a_{21T} & a_{22T} & a_{23T} & a_{24T} & a_{25T} & a_{26T} & a_{27T} & a_{28T} & a_{29T} & a_{210T}
\end{pmatrix},
\]
and
\[
\Phi(\hat{x}) = \left(\frac{1}{2} \hat{x}_1 (3\hat{x}_1 - 1)(3\hat{x}_1 - 2), \frac{1}{2} \hat{x}_2 (3\hat{x}_2 - 1)(3\hat{x}_2 - 2), \right. \\
\left. \frac{1}{2} \hat{x}_3 (3\hat{x}_3 - 1)(3\hat{x}_3 - 2), \frac{9}{2} \hat{x}_1 \hat{x}_2 (3\hat{x}_1 - 1), \frac{9}{2} \hat{x}_1 \hat{x}_2 (3\hat{x}_2 - 1), \frac{9}{2} \hat{x}_2 \hat{x}_3 (3\hat{x}_2 - 1), \\
\frac{9}{2} \hat{x}_2 \hat{x}_3 (3\hat{x}_3 - 1), \frac{9}{2} \hat{x}_1 \hat{x}_3 (3\hat{x}_1 - 1), \frac{9}{2} \hat{x}_1 \hat{x}_3 (3\hat{x}_1 - 1), 27 \hat{x}_1 \hat{x}_2 \hat{x}_3 \right) ^t,
\]
\[\hat{x}_3 = 1 - \hat{x}_1 - \hat{x}_2\] be the vector whose coordinates are the nodal basis functions of the element \(\hat{T} \), then we can write the cubic transformation:
\[
F_T = A_{F_T} \Phi(\hat{x}).
\]

An arbitrary 10-node 2-simplex element \((T, P_T, \Sigma_T)\) is defined by \(T = F_T(\hat{T})\), where \(F_T\) is invertible transformation.

Let \(\tau_h\) be an initial triangulation of the set \(\Omega\) by 10-node 2-simplex elements. Since the boundary is piecewise \((P_3)^2\) we can write \(\Omega = \bigcup_{T \in \tau_h} T\). We consider a family of finite-element spaces \((V_h)\):
\[
V_h = \{v_h \in H_0^1(\Omega) \mid v_{h|T} = p(x) : p = \hat{p} \circ F_T^{-1}, \hat{p} \in \hat{P}, T \in \tau_h\},
\]
where it is understood, that the parameter \(h\) is the defining parameter of the family and has limit zero.

We make hierarchical refinement of \(\tau_h\), dividing each element to four finite elements of the same class as shown in Fig. 2. Thus we obtain triangulation \(\tau_{h_1}\) of the domain \(\Omega\). The space \(V_{h_1}\) is finite element space associated with \(\tau_{h_1}\). We denote the set of the nodes of the triangulations \(\tau_h, \tau_{h_1}\) accordingly by \(N_h, N_{h_1}\). Let \(\{\varphi_i^{(1)}\}\) be the nodal basis in \(V_{h_1}\) associated with the set \(N_{h_1}\), excluding Dirichlet boundary points. We define the hierarchical space
\[
\tilde{V}_{h_1} = Span\{\varphi_i^{(1)}\}_{i : a_i \in N_{h_1} \setminus N_h}
\]
in addition to \(V_h \subset V_{h_1}\). As it is well-known [1, 9, 10] for polygonal domains holds the restricted strengthened C.B.S. inequality
\[
|a_T(v, w)| \leq \gamma_T \sqrt{a_T(v, v)} \sqrt{a_T(w, w)}, \quad \forall v \in V_h, \forall w \in \tilde{V}_{h_1},
\]
where
\[
a_T(u, v) = \int_T \nabla u \cdot \nabla v dx,
\]
is the restricted bilinear form.
2. Energy inequalities

We use not only straight elements but also isoparametric elements for getting an exact approximation of the boundary Γ. We represent the transformation F_T as a product of two transformations - $F_T = V_T \circ W_T$.

We define the transformation $W_T : \hat{T} \rightarrow T \subset \mathbb{R}^2$ by:

$$W_T(\hat{x}) = \begin{pmatrix} X_1 \\ X_2 \end{pmatrix} = A_{W_T} \Phi(\hat{x})$$,

and the transformation $V_T : T \rightarrow T$ by:

$$\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = V_T(X) = \begin{pmatrix} a_{13T} \\ a_{23T} \end{pmatrix} + \begin{pmatrix} a_{113}^T \\ a_{213}^T \end{pmatrix} \begin{pmatrix} X_1 \\ X_2 \end{pmatrix},$$

where we use denotations $a_{kj}^T = a_{kiT} - a_{kjT}$, $i, j, k \in \{1, 2, 3\}$.

The image T of the finite element of reference \hat{T} by transformation $V_T \circ W_T$ represents element with only one curved side. The applicability of 10-node 2-simplex elements and the quality of approximations by such elements depend
on the choice of the node a_{10T}. We determine the node a_{10T} by $\alpha_{10T} = \frac{\alpha_{4T}}{2}$, $\beta_{10T} = \frac{\beta_{3T}}{2}$. Thus we obtain transformation $\mathcal{W}_T : \hat{T} \rightarrow T$ which is special case of the transformation W_T. The transformation $\mathcal{W}_T(\hat{x})$ can be described by:

\[
X_1(\hat{x}) = \hat{x}_1 + \psi_1(\alpha_{4T}, \alpha_{5T}) \hat{x}_1 \hat{x}_2 + \psi_2(\alpha_{4T}, \alpha_{5T}) \hat{x}_1^2 \hat{x}_2^2,
\]
\[
X_2(\hat{x}) = \hat{x}_2 + \psi_1(\beta_{5T}, \beta_{4T}) \hat{x}_1 \hat{x}_2 + \psi_2(\beta_{5T}, \beta_{4T}) \hat{x}_1^2 \hat{x}_2^2,
\]
\[
\psi_1(x) = \frac{9}{2} (-1 + 2x_1 - x_2), \quad \psi_2(x) = \frac{9}{2} (1 - 3x_1 + 3x_2).
\]

We make the next denotations: $\tilde{T} = V_T(\hat{T})$, $a_{iT}^T = \mathcal{W}_T(\hat{a}_i)$, $\tilde{a}_{iT} = V_T(\hat{a}_i)$, $i = 1, 2, ..., 10$, $h_T = \text{diam}(\tilde{T})$, $\rho_T = \text{diam}(\text{inscribed spher of } \tilde{T})$. We represent the triangulation τ_h in view of:

\[
\tau_h = \{ T = F_T(\hat{T}) \mid F_T = V_T \circ \mathcal{W}_T, \text{diam}(\tilde{T}) < h \}.
\]

We have an isoparametric family ($T \in \tau_h, P_T, \Sigma_T$) of 10-node 2-simplex elements. Further, we consider only triangulations τ_h which satisfy:

(i) If the element $T \in \tau_h$ have less than two vertices over Γ then this element is a straight element;

(ii) There exists constant μ such that $\forall T \in \tau_h$, $\frac{h_T}{\rho_T} \leq \mu$;

(iii) For all curved element $T \in \tau_h$ holds $\|a_{iT} - \tilde{a}_{iT}\|_E = O(h_T^2)$, $i = 4, 5$, where $\| \cdot \|_E$ is Euclidean norm in \mathbb{R}^2.

We will analyze, how the choice of the node a_{10T} influences over quality of interpolation by 10-node 2-simplex elements.

We define the interpolant Π on $H^3(T)$, $T \in \tau_h$ by

\[
\Pi v = \sum_{i=1}^{10} v(a_{iT}) \varphi_i(T)(\hat{x}).
\]

Theorem 1. Let $\|a_{iT} - \tilde{a}_{iT}\|_E = O(h^2)$, $i = 4, 5, ..., 10$, $T \in \tau_h$ and $\hat{T}_2 \subset \hat{T}$ then we have $|v - \Pi v|_{m,T} = O(h^{3-m})$, $\forall v \in H^3(T)$ and $m = 0, 1, 2$.

Theorem 1 is a special case of the fundamental result by Ciarlet and Raviart [8].

Theorem 2. Let the triangulation τ_h fulfills the conditions (i) – (iii), then we have

\[
|v - \Pi v|_{m,T} = O(h^{3-m})
\]

$\forall v \in H^3(T)$, $T \in \tau_h$ and $m = 0, 1, 2$.
Proof. For notational convenience, we shall drop the index T throughout the proof. Let $T \in \tau_h$ be a straight element. As the node a_{i0} is barycenter of the element T, then (1) follows directly from Theorem 3.1.6 [7, p.124].

Let $T \in \tau_h$ be a curved element. The condition (iii) imposed over triangulation τ_h provides

$$\|\tilde{a}_i - \tilde{a}_i\|_E = O(h^2) \quad i = 4, 5.$$

We will prove that $\|\tilde{a}_{i0} - \tilde{a}_{i0}\|_E = O(h^2)$.

We denote $\tilde{a}_i = a_i - \tilde{a}_i$ and $\tilde{a}_i = a_i - \tilde{a}_i$, $i = 4, 5, 10$. We also denote the Fréchet derivative of the map (function) $F(x)$ by $DF(x)$ and the matrix norm associated with Euclidean norm in \mathbb{R}^2 by $\|\cdot\|$.

We can write $\tilde{a}_i = DV \tilde{a}_i^*, \tilde{a}_i^* =DV^{-1} \tilde{a}_i$. The conditions (i) – (iii) guarantee that there exist a constant C such that

$$\|DV\| \leq Ch, \quad \|DV^{-1}\| \leq \frac{C}{h}$$

[7, p.120], (as usual the same letter C stands for various constants). We obtain

(2)

$$\|\tilde{a}_i^*\|_E \leq \|DV^{-1}\| \|\tilde{a}_i\|_E \leq Ch \quad i = 4, 5,$$

because $\|\tilde{a}_i\|_E = O(h^2)$ $i = 4, 5$. Then

$$(\tilde{a}_i^*)^2 = \left(\alpha_4 - \frac{2}{3}\right)^2 + \left(\beta_4 - \frac{1}{3}\right)^2 \leq Ch^2,$$

$$(\tilde{a}_5^*)^2 = \left(\alpha_5 - \frac{1}{3}\right)^2 + \left(\beta_5 - \frac{2}{3}\right)^2 \leq Ch^2.$$

Adding the last two inequalities we obtain

$$Ch^2 \geq 2 \left(\frac{\alpha_4}{2} - \frac{1}{3}\right)^2 + 2 \left(\frac{\beta_5}{2} - \frac{1}{3}\right)^2 + \frac{1}{2} \left(\beta_4 - \frac{1}{3}\right)^2 + \frac{1}{2} \left(\alpha_5 - \frac{1}{3}\right)^2 \geq 2(\tilde{a}_{i0}^*)^2,$$

and therefore $\|\tilde{a}_{i0}^*\|_E \leq Ch$. Finally $\|\tilde{a}_{i0}\|_E \leq \|DV\| \|\tilde{a}_{i0}^*\|_E \leq Ch^2$. We can write $\|\tilde{a}_i - \tilde{a}_i\|_E = O(h^2)$ $i = 4, 5, ..., 10$, consequently applying Theorem 1 we obtain (1) which completes the proof.

Let $\varphi_{iT}(x), \ i = 1, 2, ..., 10$ be the nodal basis functions of the finite element T. We make the next denotations:

$$J_T(\hat{x}) = det(DF_T), \ J_{VT} = det(DV_T), \ J_{WT}(\hat{x}) = det(DW_T).$$

We choose such a numeration of the vertices $a_{iT} \ i = 1, 2, 3$ of the element T, that the determinant $J_{VT} > 0$.

We shall show how the energy scalar products $a_T(\varphi_{iT}, \varphi_{jT})$ $i, j = 1,2, ..., 10$ can be computed by integration over the finite element of reference. We start by:

$$a_T(\varphi_{iT}, \varphi_{jT}) = \int_T D\varphi_{iT}(x) \cdot D\varphi_{jT}(x) \, dx$$

$$= \int_T (D(\hat{\varphi}_i \circ F_T^{-1})(x) \cdot D(\hat{\varphi}_j \circ F_T^{-1})(x)) \, dx.$$

Applying the chain rule, we obtain

$$a_T(\varphi_{iT}, \varphi_{jT}) = \int_T [D\hat{\varphi}_i(F_T^{-1}(x))]^t D F_T^{-1}(x) [D F_T^{-1}(x)]^t D\hat{\varphi}_j(F_T^{-1}(x)) \, dx$$

$$= \int_T [D\hat{\varphi}_i(\hat{x})]^t [D F_T(\hat{x})]^{-1} [D F_T(\hat{x})]^{-1} D\hat{\varphi}_j(\hat{x}) J_T(\hat{x}) \, d\hat{x}.$$

Applying the chain rule once again, we write

$$a_T(\varphi_{iT}, \varphi_{jT}) = \int_T (\nabla \hat{\varphi}_i)^t [DV_T(X) DW_T(\hat{x})]^{-1}$$

$$\times [DV_T(X) DW_T(\hat{x})]^{-1} \nabla \hat{\varphi}_j J_T(\hat{x}) \, d\hat{x} = \int_T (\nabla \hat{\varphi}_i)^t [DW_T]^{-1} [DV_T]^{-1}$$

$$\times [DW_T]^{-1} [DV_T]^{-1} \nabla \hat{\varphi}_j J_T(\hat{x}) \, d\hat{x}.$$

We denote the adjoint matrices of the matrices DV_T, DW_T accordingly by B_{VT}, B_{WT}. Then

$$a_T(\varphi_{iT}, \varphi_{jT}) = \int_T (\nabla \hat{\varphi}_i)^t \frac{B_{WT} B_{VT} [B_{VT} B_{VT}]^t}{J_T(\hat{x})} \nabla \hat{\varphi}_j \, d\hat{x}$$

$$= \int_T (\nabla \hat{\varphi}_i)^t \frac{B_{WT} B_{VT} B_{WT}^t B_{VT}^t}{J_T(\hat{x})} \nabla \hat{\varphi}_j \, d\hat{x}.$$

Lemma 1. Let M^* be the adjoint matrix of an (2×2) matrix M and let $\text{det}(M) > 0$. Then we have

\begin{align*}
(3) & \quad \text{cond}(M^*) = \frac{\|M^*\|^2}{\text{det}(M)}, \\
(4) & \quad \text{cond}(M^*) = \|M^{-1}\|^2 \text{det}(M), \\
(5) & \quad \lambda_{\min}[M^*(M^*)^t] = \left(\frac{\text{det}(M))}{\|M^*\|^2}\right)^2.
\end{align*}
Proof. Since the matrix M is (2×2) we have $\|M^*\| = \|M\|$ and $\det(M^*) = \det(M)$. Then

$$\text{cond}(M^*) = \frac{\|M^*\| \cdot \|(M^*)^{-1}\|}{\det(M^*)} = \frac{\|M^*\| \cdot \|(M^*)^T\|}{\det(M^*)} = \frac{\|M^*\|^2}{\det(M)}.$$

Thus we proved (3).

To prove (4) we continue with

$$\text{cond}(M^*) = \frac{\|M^*\|^2}{\det(M)} = \left(\frac{M^*}{\det(M)}\right)^2 \det(M) = \|M^{-1}\|^2 \det(M).$$

We will prove (5). We represent the second degree of the $\det(M)$ as a product of the eigenvalues of the matrix $M^*(M^*)^t$:

$$(\det(M))^2 = (\det(M^*))^2 = \det(M^*(M^*)^t)$$

$$= \lambda_{\max}[M^*(M^*)^t] \lambda_{\min}[M^*(M^*)^t] = \|M^*\|^2 \lambda_{\min}[M^*(M^*)^t],$$

then

$$\lambda_{\min}[M^*(M^*)^t] = \frac{(\det(M))^2}{\|M^*\|^2}.$$

The proof is ended.

We define the functions

$$\omega_1(\varepsilon) = 1 - \frac{9}{2}(\sqrt{10} + 3)\varepsilon - \frac{243}{16}(2\sqrt{10} + 9)\varepsilon^2,$$

$$\omega_2(\varepsilon) = 1 + \left(81 + 13.5\sqrt{10}\right)\varepsilon + \left(2146.5 + 516.375 \sqrt{10}\right)\varepsilon^2$$

$$\sigma_W(\varepsilon) = \frac{\omega_2(\varepsilon)}{\omega_1(\varepsilon)}, \quad \sigma_T(a_{1T}, a_{2T}, a_{3T}, \varepsilon) = \sigma_W(\varepsilon) \text{cond}(B_V),$$

$$\varepsilon \in [0, \bar{\varepsilon}), \quad \bar{\varepsilon} = \frac{4}{9(9 + 2\sqrt{10})}.$$

Definition. Let us assume that the matrices M_i $i = 1, 2$ have n rows and n columns. We will write $M_1 \leq M_2$ when the inequality $\xi^T M_1 \xi \leq \xi^T M_2 \xi$ holds $\forall \xi \in \mathbb{R}^n$.

Theorem 3. Let τ_h be triangulation which satisfies the conditions (i) – (iii) and the parameter h be so small that for all $T \in \tau_h$ we have

$$\|\xi_T^i\|_{\infty} \leq \varepsilon, \varepsilon \in [0, \bar{\varepsilon}), \quad i = 4, 5$$
\begin{align*}
\|\xi\|_\infty &= \max_{i=1,2} |x_i|.
\text{Then for the element stiffness matrix } A_T \text{ is valid the inequality}
(7) \quad \sigma_T^{-1} \hat{A} \leq A_T \leq \sigma_T \hat{A},
\text{where the matrix } \hat{A} \text{ is the stiffness matrix for the finite element of reference.}
\end{align*}

\textbf{Proof.} We shall drop the index T throughout the proof as in Theorem 2. Let } \varepsilon \text{ be a fixed number in the interval } [0, \varepsilon). \text{ We shall find upper and lower bounds for the positive definite matrix}

\begin{align*}
Q &= \frac{B_W B_V B_V^t B_W^t}{J(\hat{x})},
\end{align*}

uniform with respect to } \hat{x}.

Putting } B_V \text{ instead of } M^* \text{ in (5) we have the next result}

\begin{align*}
\lambda_{\min}[B_V B_V^t] &= \frac{J_V^{\hat{x}}}{\|B_V\|^2}.
\end{align*}

Replacing the eigenvalues of the product } B_V B_V^t \text{ in the inequality}

\begin{align*}
\frac{\lambda_{\min}[B_V B_V^t]}{J_V J_W(\hat{x})} B_W B_V^t \leq Q \leq \frac{\lambda_{\max}[B_V B_V^t]}{J_V J_W(\hat{x})} B_W B_V^t,
\end{align*}

we obtain

\begin{align*}
\left(\frac{\|B_V\|^2}{J_V J_W(\hat{x})}\right)^{-1} B_W B_V^t \leq Q \leq \left(\frac{\|B_V\|^2}{J_V J_W(\hat{x})}\right) B_W B_V^t.
\end{align*}

Applying analogous reasonings for the product } B_W B_W^t \text{ we can write

\begin{align*}
\left(\frac{\|B_V\|^2 \|B_W\|^2}{J_V J_W(\hat{x})}\right)^{-1} I \leq Q \leq \left(\frac{\|B_V\|^2 \|B_W\|^2}{J_V J_W(\hat{x})}\right) I,
\end{align*}

where } I \text{ is the single matrix of order two. As a direct corollary of Lemma 1 we have}

\begin{align*}
\text{cond}(B_V) &= \frac{\|B_V\|^2}{J_V}, \quad \text{cond}(B_W(\hat{x})) = \frac{\|B_W(\hat{x})\|^2}{J_W(\hat{x})},
\end{align*}

then we can write

\begin{align*}
(8) \quad \left[\text{cond}(B_V)\text{cond}(B_W(\hat{x}))\right]^{-1} I \leq Q \leq \text{cond}(B_V)\text{cond}(B_W(\hat{x})) I.
\end{align*}

Since } \text{cond}(B_V) \text{ is not dependent on } \hat{x} \text{ we search for uniform estimate with respect to } \hat{x} \text{ only for } \text{cond}(B_W(\hat{x})).
We begin with uniform lower bound for the Jacobian. It follows from (2), that there exists so small h_0, that $\forall h \leq h_0$ the inequality (6) is fulfilled. We obtain
\[
\|\xi_i^2\|_{E} \leq \sqrt{2} \varepsilon, \quad i = 4, 5,
\]
\[
\left(\alpha_4 - \frac{2}{3}\right)^2 + \left(\alpha_5 - \frac{1}{3}\right)^2 \leq 2\varepsilon^2, \quad \left(\beta_4 - \frac{1}{3}\right) + \left(\beta_5 - \frac{2}{3}\right)^2 \leq 2\varepsilon^2
\]
from (6). We calculate the Jacobian of the transformation \mathcal{W}:
\[
J_{\mathcal{W}}(\hat{x}) = 1 + \psi_1(\beta_5, \beta_4)\hat{x}_1 + \psi_1(\alpha_4, \alpha_5)\hat{x}_2 + \psi_2(\beta_5, \beta_4)\hat{x}_1^2 + \psi_2(\alpha_4, \alpha_5)\hat{x}_2^2
\]
\[
-\psi_1(\alpha_4, \alpha_5)\psi_2(\beta_5, \beta_4)\hat{x}_1\hat{x}_2 - \psi_1(\beta_5, \beta_4)\psi_2(\alpha_4, \alpha_5)\hat{x}_1^2\hat{x}_2 - 3\psi_2(\alpha_4, \alpha_5)\psi_2(\beta_5, \beta_4)\hat{x}_1^2\hat{x}_2^2.
\]
We estimate
\[
J_{\mathcal{W}}(\hat{x}) \geq 1 - \|\psi_1\|_{\infty, K}(\hat{x}_1 + \hat{x}_2) - \|\psi_2\|_{\infty, K}(\hat{x}_1^2 + \hat{x}_2^2)
\]
\[
-\|\psi_1\|_{\infty, K}\|\psi_2\|_{\infty, K}\hat{x}_1\hat{x}_2(\hat{x}_1 + \hat{x}_2) - 3\|\psi_2\|_{\infty, K}(\hat{x}_1\hat{x}_2)^2,
\]
where K is the circle:
\[
K : \left(x_1 - \frac{2}{3}\right)^2 + \left(x_2 - \frac{1}{3}\right)^2 \leq 2\varepsilon^2.
\]
We consider the function
\[
\nu(\hat{x}) = \|\psi_1\|_{\infty, K}(\hat{x}_1 + \hat{x}_2) + \|\psi_2\|_{\infty, K}(\hat{x}_1^2 + \hat{x}_2^2)
\]
\[
+\|\psi_1\|_{\infty, K}\|\psi_2\|_{\infty, K}\hat{x}_1\hat{x}_2(\hat{x}_1 + \hat{x}_2) + 3\|\psi_2\|_{\infty, K}(\hat{x}_1\hat{x}_2)^2, \hat{x} \in \hat{T}.
\]
We compute
\[
\|\nu\|_{\infty, \hat{T}} = \|\psi_1\|_{\infty, K} + \frac{1}{2}\|\psi_2\|_{\infty, K} + \frac{1}{4}\|\psi_1\|_{\infty, K}\|\psi_2\|_{\infty, K} + \frac{3}{10}\|\psi_2\|_{\infty, K}^2,
\]
\[
\|\psi_1\|_{\infty, K} = \frac{9\sqrt{10}}{2}\varepsilon, \quad \|\psi_2\|_{\infty, K} = 2\varepsilon.
\]
Then
\[
J_{\mathcal{W}}(\hat{x}) \geq 1 - \|\nu\|_{\infty, \hat{T}} = \omega_1(\varepsilon).
\]
We establish the validity of the inequality $\omega_1(\varepsilon) > 0$, $\varepsilon \in [0, \varepsilon)$ with direct verification.
We calculate the matrix $B_W B_W^t = \begin{pmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{pmatrix}$:

\[
b_{11} = (1 + \psi_1 (\beta_5, \beta_4) \hat{x}_1 + \psi_2 (\beta_5, \beta_4) \hat{x}_2)^2 + (\psi_1 (\alpha_4, \alpha_5) \hat{x}_1 + 2 \psi_2 (\alpha_4, \alpha_5) \hat{x}_1 \hat{x}_2)^2,
\]
\[
b_{12} = -[(1 + \psi_1 (\beta_5, \beta_4) \hat{x}_1 + \psi_2 (\beta_5, \beta_4) \hat{x}_2)(\psi_1 (\beta_5, \beta_4) \hat{x}_1 + 2 \psi_2 (\beta_5, \beta_4) \hat{x}_1 \hat{x}_2) + (1 + \psi_1 (\alpha_4, \alpha_5) \hat{x}_2 + \psi_2 (\alpha_4, \alpha_5) \hat{x}_2)(\psi_1 (\alpha_4, \alpha_5) \hat{x}_1 + 2 \psi_2 (\alpha_4, \alpha_5) \hat{x}_1 \hat{x}_2)],
\]
\[
b_{22} = (1 + \psi_1 (\alpha_4, \alpha_5) \hat{x}_2 + \psi_2 (\alpha_4, \alpha_5) \hat{x}_2)^2 + (\psi_1 (\beta_5, \beta_4) \hat{x}_2 + 2 \psi_2 (\beta_5, \beta_4) \hat{x}_1 \hat{x}_2)^2.
\]

Using the inequality

\[(9) \quad \|B_W (\hat{x})\|^2 \leq \frac{1}{2} (b_{11} + b_{22} + |b_{11} - b_{22}| + 2|b_{12}|),\]

we find uniform upper bound for $\|B_W (\hat{x})\|^2$ with respect to \hat{x}. We estimate separately the addends on the right hand side of the inequality (9)

\[
b_{11} + b_{22} \leq 2 + 2\|\psi_1\|_{\infty, K} (\hat{x}_1 + 2\hat{x}_2) + 2(\|\psi_1\|_{\infty, K} + \|\psi_2\|_{\infty, K})(\hat{x}_1^2 + \hat{x}_2^2)
\]
\[
+ 4\|\psi_1\|_{\infty, K} \|\psi_2\|_{\infty, K} (\hat{x}_1 \hat{x}_1 + \hat{x}_2 \hat{x}_2) + 8\|\psi_2\|_{\infty, K} (\hat{x}_1 \hat{x}_2)^2
\]
\[
\leq 2 + 2(\|\psi_1\|_{\infty, K} + \|\psi_2\|_{\infty, K}) + 2\|\psi_1\|_{\infty, K} + 3\|\psi_1\|_{\infty, K} \|\psi_2\|_{\infty, K} + \frac{3}{2} \|\psi_2\|_{\infty, K},
\]
\[
|b_{11} - b_{22}| \leq |\psi_1 (\alpha_4, \alpha_5) \hat{x}_1 - \psi_1 (\beta_5, \beta_4) \hat{x}_2 + 2 (\psi_2 (\alpha_4, \alpha_5) - \psi_2 (\beta_5, \beta_4)) \hat{x}_1 \hat{x}_2|
\]
\[
+ |\psi_1 (\alpha_4, \alpha_5) \hat{x}_1 + \psi_1 (\beta_5, \beta_4) \hat{x}_2 + 2 (\psi_2 (\alpha_4, \alpha_5) + \psi_2 (\beta_5, \beta_4)) \hat{x}_1 \hat{x}_2|
\]
\[
+ |2 + \psi_1 (\beta_5, \beta_4) \hat{x}_1 + \psi_1 (\alpha_4, \alpha_5) \hat{x}_2 + \psi_2 (\beta_5, \beta_4) \hat{x}_1^2 + 2 \psi_2 (\alpha_4, \alpha_5) \hat{x}_1 \hat{x}_2|.
\]

The inequality

\[
|b_{11} - b_{22}| \leq \left(\|\psi_1\|_{\infty, K} (\hat{x}_1 + \hat{x}_2) + \|\psi_2\|_{\infty, K} (\hat{x}_1^2 + \hat{x}_2^2)\right)
\]
\[
(2 + \|\psi_1\|_{\infty, K} (\hat{x}_1 + \hat{x}_2) + \|\psi_2\|_{\infty, K} (\hat{x}_1^2 + \hat{x}_2^2))
\]
\[
+ \left(\|\psi_1\|_{\infty, K} (\hat{x}_1 + \hat{x}_2) + 4\|\psi_2\|_{\infty, K} \hat{x}_1 \hat{x}_2\right)^2
\]

is true because of

\[
\|\psi_i\|_{\infty, K} = \min_{x \in K} \psi_i (\hat{x}), \quad i = 1, 2.
\]
Since $\hat{x}_1^i + \hat{x}_2^i \leq 1$ for $i = 1, 2, 3, \ldots$ we have

$$|b_{11} - b_{22}| \leq 2(||\psi_1||_{\infty,K} + ||\psi_2||_{\infty,K})(1 + ||\psi_1||_{\infty,K} + ||\psi_2||_{\infty,K}).$$

For the last term in the right hand side of (9) we obtain

$$|b_{12}| \leq ||\psi_1||_{\infty,K}(\hat{x}_1 + \hat{x}_2) + \left[2||\psi_1||_{\infty,K}^2 + 4||\psi_2||_{\infty,K}\right] \hat{x}_1 \hat{x}_2$$

$$+ 3||\psi_1||_{\infty,K} ||\psi_2||_{\infty,K}(\hat{x}_1 + \hat{x}_2) + 2||\psi_2||_{\infty,K}^2 (\hat{x}_1^2 + \hat{x}_2^2)$$

$$\leq ||\psi_1||_{\infty,K} + ||\psi_2||_{\infty,K} + \frac{3}{4} ||\psi_1||_{\infty,K} ||\psi_2||_{\infty,K} + \frac{1}{2} (||\psi_1||_{\infty,K}^2 + ||\psi_2||_{\infty,K}^2).$$

We estimate

$$||B_W(\hat{x})||^2 \leq 1 + 3(||\psi_1||_{\infty,K} + ||\psi_2||_{\infty,K})$$

$$+ \frac{10||\psi_1||_{\infty,K}^2 + 17||\psi_1||_{\infty,K} ||\psi_2||_{\infty,K} + 9||\psi_2||_{\infty,K}^2}{4} = \omega_2(\varepsilon).$$

The inequality

$$\sigma_T^{-1} I \leq Q \leq \sigma_T I$$

follows from the inequality $\text{cond}(B_W(\hat{x})) \leq \sigma_W(\varepsilon)$ and (8). Now we can estimate the matrix A_T

$$\xi^t A_T \xi = \xi^t \left| \int_T (\nabla \phi_i)^t Q \nabla \phi_j \, d\hat{x} \right|_{i,j=1,2,\ldots,10} \xi = \int_T \left(\sum_{i,j=1}^{10} \xi_i (\nabla \phi_i)^t Q \nabla \phi_j \right) \xi_j \, d\hat{x}$$

$$= \int_T \left(\sum_{i=1}^{10} \xi_i \nabla \phi_i \right)^t Q \left(\sum_{j=1}^{10} \xi_j \nabla \phi_j \right) \, d\hat{x}, \quad \forall \xi \in \mathbb{R}^{10}.$$

The inequalities

$$\xi^t A_T \xi \leq \sigma_T \int_T \left(\sum_{i=1}^{10} \xi_i \nabla \phi_i \right)^t I \left(\sum_{j=1}^{10} \xi_j \nabla \phi_j \right) \, d\hat{x} = \sigma_T \xi^t \hat{\Lambda} \xi,$$

$$\sigma_T^{-1} \xi^t \hat{\Lambda} \xi \leq \xi^t A_T \xi,$$

follow from (10). The last results mean that (7) is fulfilled.

We make hierarchical refinement for the finite element of reference (Fig. 3). We obtain four curved elements $T_i, \quad i = 1, 2, 3, 4$ (Fig. 4) after refinement of an arbitrary curved element $T \in \tau_h$. If we need continue the refinement process
Figure 3: Hierarchical refinement of the finite element of reference. Local refinement of the element \hat{T}_2.

Figure 4: Hierarchical refinement of the finite element T. Local refinement of the element T_2.
we have to refine curved elements with more than one curved side. It does not lead to difficulties since for the refinement of the curved element \(T_2 \) for example, we need only transformation \(F_T \) and local refinement of the element \(\tilde{T}_2 \).

We denote the restrictions of the spaces \(V_{h, T}, \tilde{V}_{h_{1}, T}, V_{h_{1}, T} \) over the element \(T \) respectively by \(V_{h, T}, \tilde{V}_{h_{1, T}}, V_{h_{1, T}} \). We write the so-called two-level hierarchical basis element stiffness matrix

\[
A_T = \begin{pmatrix}
A_{T;11} & A_{T;12} \\
A_{T;21} & A_{T;22}
\end{pmatrix}, \quad \forall T \in \tau_h.
\]

We consider the generalized eigenvalue problem

\[(11) \quad \lambda A_T \xi = S_T \xi,
\]

over \(T \in \tau_h \), where

\[
S_T = A_{T;22} - A_{T;21} A_{T;11}^{-1} A_{T;12}
\]

is the element Schur complement. The quantity \(\lambda_{T, \text{min}} \) is the smallest solution for the problem \((11)\).

The next theorem states that the strengthened Cauchy - Buninakowskii - Schwarz inequality is valid over curved domains \(\Omega \) uniformly with respect to \(h \), when the corresponding triangulations \(\tau_h \) satisfies some conditions.

Theorem 4. Let the conditions of Theorem 3 hold. Then there exists a constant \(\gamma \in [0, 1) \) depending only on the geometry of the initial triangulation \(\tau_h \), such that

\[
|a(v, w)| \leq \gamma \sqrt{a(v, v)} \sqrt{a(w, w)}
\]

for all \(v \in V_h \) and \(w \in \tilde{V}_{h_1} \).

Proof. First, we shall prove that \(\sigma_T \) is independent on \(h \). The functions \(\omega_i, i = 1, 2 \) depend only on \(\varepsilon \), hence it is necessary merely to prove that \(\text{cond}(B_V) \) is independent on \(h \). Putting \(B_V \) instead of \(M^* \) in \((4)\) and using

\[
\|DV_T^{-1}\|^2 = O(h_T^{-2}) \quad \text{and} \quad J_{VT} = O(h_T^2),
\]

we have

\[
\text{cond}(B_{VT}) = \|DV_T^{-1}\|^2 J_{VT} = O(1).
\]

Consequently \(\sigma_T \) is independent on \(h \).

Since the spaces \(V_{h,T}, \tilde{V}_{h,1,T} \) are finite dimensional and \(V_{h,T} \cap \tilde{V}_{h,1,T} = \{0\} \) there exists a constant

\[
\gamma_T = \gamma_T(V_{h,T}, \tilde{V}_{h,1,T}) \in [0, 1)
\]
such that

$$|a_T(v, w)| \leq \gamma_T(V_{h,T}, \tilde{V}_{h_1,T}) \sqrt{a_T(v,v)} \sqrt{a_T(w,w)}, \ \forall v \in V_h, \forall w \in \tilde{V}_{h_1},$$

(see [9]).

We shall find upper bound for γ_T estimating the eigenvalue $\lambda_{T,\min}$ by $\hat{\lambda}_{\max} = \lambda_{\max}[\hat{A}]$. Since $S_T \leq A_T$ [9] and $A_T \leq \sigma_T \hat{A}$, we have

$$\lambda_{T,\min} = \lambda_{\min}[A_T^{-1} S_T] \geq \lambda_{\min}[A_T^{-2}]$$

$$\geq (\lambda_{\max}[A_T^2])^{-1} \geq (\lambda_{\max}[A_T])^{-2} \geq \left(\sigma_T \hat{\lambda}_{\max}\right)^{-2}.$$

Then $\gamma_T \leq \sqrt{1 - \left(\sigma_T \hat{\lambda}_{\max}\right)^{-2}}$.

Further we prove the global strengthened C. B. S. inequality

$$|a(v, w)| \leq \sum_{T \in \tau_h} |a_T(v, w)| \leq \sum_{T \in \tau_h} \gamma_T \sqrt{a_T(v,v)} \sqrt{a_T(w,w)}$$

$$\leq \sum_{T \in \tau_h} \sqrt{1 - \hat{\lambda}_{\min}^{-1} \sigma_T^{-1}} \sqrt{a_T(v,v)} \sqrt{a_T(w,w)}$$

$$\leq \sqrt{1 - \hat{\lambda}_{\min}^{-1}} \sum_{T \in \tau_h} \sqrt{a_T(v,v)} \sqrt{a_T(w,w)},$$

where $\sigma = \max_{T \in \tau_h} \sigma_T$. We put

$$\gamma = \sqrt{1 - \left(\hat{\lambda}_{\max} \sigma\right)^{-2}}$$

and we obtain

$$|a(v, w)| \leq \gamma \left(\sum_{T \in \tau_h} a_T(v,v)\right)^{\frac{1}{2}} \left(\sum_{T \in \tau_h} a_T(w,w)\right)^{\frac{1}{2}} \leq \gamma \sqrt{a(v,v)} \sqrt{a(w,w)}.$$

The proof is completed.

Acknowledgement. This work is partially supported by the Bulgarian Ministry of Science and Technologies, under Contract MM-524/95.
References

Department of Mathematics
Technical University of Gabrovo
Gabrovo 5000, BULGARIA

Received: 31.07.1998