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The strengthened Cauchy - Buniakowskii - Schwarz inequality for elliptic bilinear forms
over curved domains and 10-node 2-simplex elements is considered. It is proven that the in-
equality holds uniformly with respect to the finite element spaces. The results have applications
in multilevel method for solving elliptic boundary-value problems. Upper bound for contraction
number is found.
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1. Introduction

Let U, V be two linear finite-dimensional spaces, U NV = {0} and let
there exists a constant 4 € [0,1) depending only on the spaces U and V, but
not dependent on the choice of the elements u € U, and v € V, such that

|(u, v)| < 7V (w, u)V/(v,9).

The last inequality is the so-called strengthened Cauchy-Buniakowskii-Schwarz
(C.B.S.) inequality. Among authors who have used the strengthened C.B.S.
inequality in two-level method we mention Bank and Dupon (3], Braess [4,5],
Maitre and Musy [10], Axelsson [1], and Axelsson and Gustafsson [2]. The
inequality has been used in connection with the two-grid FAC-preconditioner
by McCormick [12], McCormick and Thomas [13]. The C.B.S. inequality is
applied in works of Bramble et al. [6] and Mandel and McCormick [11]. The
role of the C.B.S. inequality in multilevel methods is considered in detail by
Eijkhout and Vassilevski [9]. Computation of constants in the strengthened
C.B.S. inequality we can find in [14]. Our goal is to study the behaviour of the
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0

Figure 1: Finite element of reference

constant in the strengthened C.B.S. inequality for a class of 10-node curvilinear
triangle finite elements.

Let H!(Q) be the usual Sobolev’s space.

We consider an elliptic bilinear form «(-,-):

a(u,v) = / Vu-Vodz, u,v€ HY(Q)
Q

with u,» = 0 on I'p C T’ = 99, meas(I'p) # 0. The set Q is open subset of
R?Z, with Lipschitz - continuous boundary. We assume that I' is piecewise (P3)2,
where P is the space of all polynomials of degree, not exceeding k-th.

We denote the point (w1, 22) by 2, and the vector with the same coordi-

nates by z. o
Let (7', P, %) be the 10-node 2-simplex finite element of reference (Fig.

1) defined as follows:

T = {(#1,%2) | &1 >0, &2 >0, & + & < 1} is the unit 2-simplex;

P = P3, where P is the space of all polynomials of degree, not exceeding
k-th onhf‘; _ _

Y={(&1,%2) | &1 =%, 22=1%; i+j<3; i,j€{0,1,2,3}} is the set
of all Lagrangian interpolation nodes.

Let air(avir, azir), i = 1,2,...,10 be the nodes of the element T, Af,
be the matrix
Ap, = ( anT Q217 13T Q14T Q15T Q16T Q17T Q18T Q19T @1,10T ) ,

a21T Q22T Q23T Q24T Q25T (G267 Q27T (28T Q29T (@2,10T
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and
1
B() = (%(3 ~ 1)(381 - 2), 32(32 — 1)(32; - 2),

| o 9, . .. 9, . ... 9. . ...
-2-51:3(3.’123 = 1)(31,3 - 2), -2‘1213:2(3:1:1 o 1), §:v1a:2(3a:2 = 1), 51‘2.’83(31‘2 = 1),

9. .. 9. . .. 9. o v\
§:B2:173(3:L'3 - 1), ’5.’1:12:3(3.’123 - 1), 5.’1;1.’83(3.’171 - l),2i:L‘1:L'2:L'3) )
&3 = 1 — &, — &9 be the vector whose coordinates are the nodal basis functions

of the element 7", then we can write the cubic transformation:
Fr = Ap, ®(&).

An arbitrary 10-node 2-simplex element (7', Pr,X7) is defined by T = FT(T),
where Fr is invertible transformation.

Let 7, be an initial triangulation of the set by 10-node 2-simplex el-
ements. Since the boundary is piecewise (Ps)? we can write = Uren, T- We
consider a family of finite-element spaces (V}) :

Vi = {vy € Hy(Q) | vpr = p(z) : p=po Fz',p€ P,T € 1},

where it is understood, that the parameter % is the defining parameter of the
family and has limit zero.

We make hierarchical refinement of 7, dividing each element to four finite
elements of the same class as shown in Fig. 2. Thus we obtain triangulation
Th, of the domain Q. The space V), is finite element space associated with
Th,. We denote the set of the nodes of the triangulations 75, 7, accordingly
by Np, Nj,. Let {tp‘(-l)} be the nodal basis in V), associated with the set Ny,
excluding Dirichlet boundary points. We define the hierarchical space

Vi, = Span{p{"};. ai€Np, \N),

in addition to Vj, C V,,,. As it is well-known [1, 9, 10] for polygonal domains
holds the restricted strengthened C.B.S. inequality

|("T(va LD)I S 7T\/a'T(”7 ’U)\/(lT('w, 'U)), Vv € Vln Yw € Vhl"

where
aT(u,v)=/Vu-Vvda:,
T

is the restricted bilinear form.
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Figure 2: Finite element T € 7, after refinement. We use the next
simple legend: O - node from the coarse triangulation, e - node from
the fine triangulation.

2. Energy inequalities

We use not only straight elements but also isoparametric elements for
getting an exact approximation of the boundary I'. We represent the transfor-
mation Fr as a product of two transformations - Fr = Vy o Wr.

We define the transformation Wy : T — 7 C R? by:

Wr(&) = ( §; ) = Aw,;®(&), where

.A _(100041‘ a5T00%%alo'T)
Wr 010 fBar Bst 2 3 0 0 Pror )’

and the transformation V7 : 7 — T by:

T T
1 @131 Gj13 G123 Xy
-wo= (o) + (i o) (%)
( T2 ) 7(X) ( a23T ) 4313 @33 X2 )’

where we use denotations af;; = apir — ax;T, i,5,k € {1,2,3}.

The image T of the finite element of reference T by transformation Vg o
Wr represents element with only one curved side. The applicability of 10-node
2-simplex elements and the quality of approximations by such elements depend
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on the choice of the node ajor. We determine the node «¢107 by 10,7 = %1,
Bro,T = &21'- Thus we obtain transformation Wy : T' — 7T which is special case
of the transformation Wy. The transformation Wr(&) can be described by:

X1(&) = &1 + ¥1(eur, asT)E182 + P2(Qur, asT)E123,
Xo(&) = &2 + Y1(BsT, Bat)&182 + Y2(Bs, Bar) i3 2,
9 9
Pi(z) = —(—1 + 22y — 22), Pa(z) = —(1 — 3z + 3z2).

We make the next denotations: T = VT(T), alr = WT(a,), a;ir = Vr(a;),
i=1,2,..,10, hr = diam(T), pr = diam(inscribed spher of T). We represent
the tria.ngulatnon T3, in view of:

= {T = Fr(T) | Fr = VroWr, diam(T) < h}.

We have an isoparametric family (T € 7, Pr, 1) of 10-node 2-simplex
elements. Further, we consider only triangulations 7, which satisfy:

(i) If the element T € 7, have less than two vertices over I' then this
element is a straight element;

(ii) There exists constant u such that VT € 73, ’;T < u;

(iii) For all curved element T € 7 holds ||a; — @;7|lg = O(h%), i = 4,5,
where || - || is Euclidean norm in R2.

We will analyze, how the choice of the node @07 influences over quality
of interpolation by 10-node 2-simplex elements.

We define the interpolant II on H3(T'), T € 74 by

10
v = Z v(air)ir(2).
i=1

Theorem 1. Let ||air — Gir|lg = O(h?), i=4,5,..,10, T € 7, and
P, c P then we have |v — |y = O(h3™), Vv € H}(T) and m = 0,1, 2.

Theorem 1 is a special case of the fundamental result by Ciarlet and
Raviart [8].

Theorem 2. Let the triangulation 7, fulfills the conditions (i) — (i),

then we have
(1) v = |1 = o(h®*™)

Yve H¥T), T € 1, and m = 0,1,2.
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Proof. For notational convenience, we shall drop the index T through-
out the proof. Let T" € 7, be a straight element. As the node «;9 is barycenter
of the element T, then (1) follows directly from Theorem 3.1.6 [7, p.124].

Let T € 1), be a curved element. The condition (#i¢) imposed over trian-

gulation 7, provides
lg; &l = O(h?) i = 4,5.

We will prove that ||a;q — @ollg = O(h?).

We denote s; = a; —a; and sF = a¥ —a;, i =4,5,10. We also denote the

Fréchet derivative of the map (function) F(x) by DF(z) and the matrix norm
associated with Euclidean norm in R? by || - |-
We can write s; = DVs¥, s¥ = DV ~1s;. The conditions (i) — (iii) guar-

antee that there exist a constant C such that

Vi <o, v < S
[7, p.120], (as usual the same leter C stands for various constants). We obtain
(2) lsllz < 1PVl llsillz < Ch i = 4,5,

because ||s;||; = O(h?) i = 4,5. Then
2 2
()2 = (a.; - g) + (,34 — %) <Ch?,

(s5)° = (as - %)2 + (ﬁ - g)z < Che.

Adding the last two inequalities we obtain

1\? 1\? 1 1\2 1 1\ 2 .
onz2(5-3) +2(3-3) +3(-3) +5(e-3) 220,

and therefore ||s}o|lz < Ch. Finally ||siollz < |DV||.|Istollz < Ch®. We can

write |lg; — &;||z = O(h?) i = 4,5,...,10, consequently applying Theorem 1 we
obtain (1) which completes the proof. ]

Let pir(z), i = 1,2,...,10 be the nodal basis functions of the finite
element T. We make the next denotations:

Jr(2) = det(DFr), Jv, = det(DVr), Jyw,(&) = det(DWr).

We choose such a numeration of the vertices a;7 ¢ = 1,2,3 of the element T,
that the determinant Jy,, > 0.
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We shall show how the energy scalar products ar(eir, ¢j7) 1, j =1,2,...,10
can be computed by integration over the finite element of reference. We start

by:
ar(pir, PiT) = /:r Dyir(z) - Dpjr(z) dz

- /TD (@i 0 F51) (z) - D (@5 0 Fy) (2) d.

Applying the chain rule, we obtain

ar(pir pir) = [ [Do(F @) DEF @) [DFF! ()] Dgs(F5* o)) de

= [ D@ DR @) [P @] D@ 2(2) da.

Applying the chain rule once again, we write

ar (i, piT) = /.(Veﬁi)t[DV:r(X)DWT(fi')]_1
) T
x[[DVT(X)DWT(:T:)]‘I]tV(,a“jJT(:i') dé = /T (V@) [ DWr] [ DV

x [[DWT]*1 [DVT]-I] "V o;0r(3) di.

We denote the adjoint matrices of the matrices DVy, DWr accordingly by
By,, Bw,. Then

: - «BwsBv.[BwsBv, ' . .
aT((P:'Ty‘PjT) = /(ch;)‘ Wr VT[ :’VT VT] VSDj d3
T Jr(&)

Bw.,.By..B},_ B!
- 2\t T T2 Vp W P
= /T(ch,) T2 (@) V¢;di.

Lemma 1. Let M* be the adjoint matriz of an (2 x 2) matriz M and
let det(M) > 0. Then we have

*]12
(3) cond(M*) = J}:f(ﬂlﬁl{),
(4) cond(M*) = || M| det(M),
(5) Aminl M+ ()] = (D)

=) -
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Proof. Since the matrix M is (2 X 2) we have ||M*|| = ||M]|| and
det(M*) = det(M). Then

1.7 | L7 o 7.7

cond(M*) = || M*||.|[(M*)7}]| = | det(M*) ~ det(M)’

Thus we proved (3).
To prove (4) we continue with

WM _ ||
det(M) det(M)

We will prove (5). We represent the second degree of the det(M) as a
product of the eigenvalues of the matrix M*(M*)*:

(det(M))2 = (det(M"))2 = det(M"(M")‘)
= Amax[M*(M*) Domin[ M*(M*)*] = | M*||* Amin[M*(M*)"],

2
det(M) = || M| det(M).

cond(M*) =

then (det( ))2
det(M
Amin[M*(M*)f] = ~——=2,
l|p+)?
The proof is ended. ’ [

We define the functions

24
wi(e) =1- §(¢1o +3)e — 1—63(2\/10 +9)e?,

wa(e) = 1+ (81 +13.5v10) e + (2146.5 + 516.375 VI0) &2

ow(e) = ::Eg, or(a1T, @21, 83T, €) = oW(€)cond(By),

A F=—
€ €[0,%), 3—9(9+2m).

Definition. Let us assume that the matrices M; i = 1,2 have n rows
and n columns. We will write M; < M, when the inequality _f_TMl_f_ < _E_TM2§
holds V{ € R™.

Theorem 3. Let 7, be triangulation which satisfies the conditions
(2) — (#i%) and the parameter h be so small that for all T € 1), we have

(6) lslloo < & € €[0,8), i=4,5
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(lz]lcc = max;=1,2|xi|). Then for the element stiffness matriz At is valid the
inequality X X

(M) or'A < Ar < o7,

where the matriz A is the stiffness matriz for the finite element of reference.

Proof. We shall drop the index T throughout the proof as in Theorem
2. Let € be a fixed number in the interval [0, ). We shall find upper and lower
bounds for the positive definite matrix

BvaB€,B{,V
Q=——F—="
J(Z)
uniform with respect to &.
Putting By instead of M™* in (5) we have the next result
Ui

Aminl By By) = 10

Replacing the eigenvalues of the product By B}, in the inequality

.

] t ’\maX[BVBw
—~BwBpy <Q < ——*=
JvIw (&) wBw <@

JvIw(&)

we obtain

Jv Iw(&) JvIw(2)

Applying analogous reasonings for the product By B},, we can write

-1
I1Bv 121 Bwll? I<Q< ||Bv||2||Bw||2I
JvIw (%) =TT Jvdw(@)

Bulz \ ! Bvll2

where I is the single matrix of order two. As a direct corollary of Lemma 1 we
have

2 ~\(12
cond(By) = —-——”13‘:,” , cond(Bw(&)) = —-—————Hgm((?)" i
then we can write
(8) [cond(Bv )cond(Bw(%))]™ I < Q < cond(By )cond(Bw(#))I.

Since cond(By) is not dependent on & we search for uniform estimate with
respect to & only for cond(Bw(%)).
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We begin with uniform lower bound for the Jacobian. It follows from
(2), that there exists so small Ao, that VA < ho the inequality (6) is fulfilled. We

obtain
":’:"E < \/:?'-57 i =4,5,

2\? 1\* 1 2\?
_Z = < 2 PR _Z < 2
(e1-5) +(5) w2 (o0-3) + (s6-5) <2
from (6). We calculate the Jacobian of the transformation W:

Iw(®) = 1 + ¥1(Bs, Ba)E1 + ¥1(au, as)Ea + Va5, B1)3T + Yo, as)i)

— 1 (aa, a5)Pa(Bs, Ba) 282 — P1(Bs, Ba)P2(cus, a5)E1E5
—3ta(auq, @5)P2(Bs, Ba)d2 83,
We estimate

Iw(&) 2 1 = [lloo s (1 + 82) = elloo, i (23 + 33)

1911l oo,k 1¥2llco, k E122(E1 + £2) — 3||92llZ, s (312)%,

where K is the circle:

2 2
K : (a:l—-z—) +(m2—%) < 262, |

We consider the function .
V() = [W1lloo,x (F1 + 22) + [W2ll oo i (&1 + £3)

Y lloo, i 1¥2ll oo,k E182(E1 + 22) + 3llvall i (#182)%, 2 € T

We compute
1 1 3.
1Nl oo 2 = 1¥1lloo,xc + 5"'/’2"00,1( + Z||¢1|Iw,l\’”¢2|loo,]\’ + ’1'6||¢2||°o,x’

9v10
1¥1llco, i = —3 5 1¥2lloo i = 27¢.

Then
Iw(E) 2 1= V]l = wi(e)-

We establish the validity of the inequality wi(¢) > 0, ¢ € [0,%) with direct
verification.



Strengthened Cauchy Inequality for Bilinear ... 133

We calculate the matrix BWB{,V = ( z; ll:;: ) 2

b1 = (1 + ¥1(Bs, Ba)E1 + P2(Bs, ﬂ4)ﬁ§)2 + (V1( 4, @5)E1 + 292(0a, a5)E182)?,
bz = — [(1 + ¥1(Bs, Ba)&1 + ¥2(Bs, Ba)E})(¥1(Bs, Ba)E2 + 2¢2(Bs, Ba)E122) -
+ (1 + ¥y, as)@2 + Yo(au, 5)E3) (1, as)d1 + 2¢a( 0, as)d12)]
b22 = (1 + ¢1(a4, 055)522 + "/’2(0!4, as)ig)z + (1/)1([35, ﬂ4)§32 + 2'(/)2(ﬂ5,ﬂ4).’51572)2.
Using the inequality

N 1
9) |Bw(#)II> < 3 (b11 + b2z + |b11 — baa| + 2|b12]),

we find uniform upper bound for ||By(#)||> with respect to # We estimate
separately the addends in the right hand side of the inequality (9)

b1 + baz < 2 + 2/[¥lloo e (81 + &2) + 2(11ll%0 i + I2lloo i )(#E + 2)
+2/|%1lloo il V2lloo i (83 + 23) + l92llZe 1 (81 + £2)
+4l|D1lloo i 1¥2lloo e F1E2(&1 + E2) + 8llall, 1 (£182)°

: 3
< 24 2(|#1lloosc + 1¥2lloic) + %1120, 5 + ¥1lloo i 1¥2lloo, i + §||'/’2||go,K’
b1 — baa| < |91(aa, @5)E1 — $1(Bs, Ba)E2 + 2 (Y2(ea, as) — Ya(Bs, Ba)) £12| X
|91 (s, as)E1 + $1(Bs, Ba)d2 + 2 (Y2( @4, @s) + $2(Bs, B4)) F12a]
+ |¥1(Bs, Ba)&1 — ¥1(4, as)@2 + P2(Bs, Ba)E} — o0, a5)d3| x
|2 + $1(8s, Ba)E1 + Y1(ca, @5)2 + P2(Bs, B4)E] + ol as)d3| -
The inequality
b1z = baal < (Illeosc(B1 + 82) + Walleo (8 + 83)) %

(2+ 1lloe i 1 + 2) + Ileo (8 + 23)

2
4 (Il (B1 + 22) + Alalleo e E12)

is true because of

, i=1,2.

1¥illoo,x =

mip %(2)
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Since &} + &5 < 1fori=1,2,3,... we have
1611 = b22| < 2(|1%1lloo i + 1¥2lloo, )L + 1P1lloo,ic + [1¥2]lco,x)-

For the last term in the right hand side of (9) we obtain

bral < [81loo,ic (31 + #2) + (2611, + 41 2lle i

301 lloo sellalloo 1 (1 + £2) + 20|l (83 + 8D)] 81

3 1
< 1¥1lloo,x + 1¥2llo,x + Z||¢1||oo,1(||¢2"oo,1{ + 5("’/’1”30,1( o ”'/’2”:0,1{)-

We estimate
1Bw(@)I? < 1+ 3(1%1llo, i + 1¥2lloo,x)

N 10(191l12, k¢ + 171191l oo, xc1%2ll o, + 9lleallZ, x

7} = ws(¢€).

The inequality
(10) o' I < Q <orl

follows from the inequality cond(Bw(&)) < ow(¢) and (8). Now we can estimate
the matrix Ar

! 10
tATE = £ = [ 3 & (Ve)'QVe;) & d
§Are=% .',,':1,2,...,10é -/T & (Ve)'QVei) ¢ d

i,7=1

/T (V@:)'QV@; di

10 ¢ 10
= /T (}:&-V@) Q (Ze,-vcpj) d&, V€ € R™.

i=1 Jj=1

The inequalities

10 t 10 X
é‘AT_f_S GT/T (Z E,'V(ﬁ,') I (Eij(ﬁj) di = o‘TétAé,

i=1 =1

o ¢ AL < {ArE,
follow from (10). The last results mean that (7) is fulfilled. [
We make hierarchical refinement for the finite element of reference (Fig.

3). We obtain four curved elements T; i = 1,2,3,4 (Fig. 4) after refinement of
an arbitrary curved element 7' € 7. If we need continue the refinement process
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Figure 3: Hierarchical refinement of the finite element of reference. Local re-

finement of the element 75.

Figure 4: Hierarchical refinement of the finite element 7". Local refinement of

the element 75.
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we have to refine curved elements with more than one curved side. It does not
lead to difficulties since for the refinement of the curved element 7% for example,
we need only transformation F7 and local refinement of the element Ty.

We denote the restrictions of the spaces Vi, V,,,, V},, over the element T
respectively by Vj 1, \~/'hl T> Vi, 7. We write the so-called two-level hierarchical
basis element stiffness matrix

Arn Arpne ) \
= ’ ’ , VT .
Ar ( Aro1 Ar22 AL

We consider the generalized eigenvalue problem
(11) A€ = ST,
over T € 1, where
St = -AT;22 - AT;ZIA;;IH-AT;IZ

is the element Schur complement. The quantity A7 nin is the smallest solution
for the problem (11).

The next theorem states that the strengthened Cauchy - Buniakowskii -
Schwarz inequality is valid over curved domains  uniformly with respect to h,
when the corresponding triangulations 7, satisfies some conditions.

Theorem 4. Let the conditions of Theorem 3 hold. Then there exists
a constant vy € [0,1) depending only on the geometry of the initial triangulation

Th, Such that
|a(v, w)| < vv/a(v,v)y/a(w, w)
forallveVy, and w € \7;,1.

Proof. First, we shall prove that o7 is independent on k. The functions
w; ¢ = 1,2 depend only on ¢, hence it is necessery merely to prove that cond(By)
is independent on h. Putting By instead of M* in (4) and using

IDV||* = O(h7?) and Jv, = O(h}),

we have "
cond(By,) = ||DV7||"Jvy = O(1).

Consequently o7 is independent on h. _
Since the spaces V7, V},, 1 are finite dimensional and V7 (\ Vi, T =
p ) 1 ’ 1y

{0} there exists a constant

vr = y7r(Vir, Vig,r) € [0,1)
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such that
lar(v, )| < Y7 (Va1 Viy7)Vear (v, v)/ar(w, w), Yv €V, Yw € \7,,,,
(see [9]).
We shall find upper bound for vy estlmatmg the eigenvalue A7 nin by

Mnax = z\mu[A] Since S7 < A7 [9] and A < o7 A, we have

/\T.min = ’\min[A;‘1 ST] > ’\miu[A';Z]

2 (’\max[A ])—1 (Amax[AT])™ 2> Z (O'Tj‘ma.v) =

" -2
Then 7 < \/ 1-— (O'T/\max)
Further we prove the global strengthened C. B. S. inequality

Ia(v7w)| < Z I(lT(‘U,‘w)I < Z 7T\/aT('v’ v)\/a'_r(w, w)

TE™H Temn,

< z V1- :\mina;l\/a;r(v, v)var(w, w)

Ter,

< V 1- :\mina—l E \/(IT('I), v)\/a.T(w, w),

TET,

where 0 = maxre,, or. We put

v = \/1 - (:\maxa) -

and we obtain

la(v, w)] < 7 (Z ar(v, v))

TET,

V=
W=

( Z ar(w, 'w)) < vva(v,v)y/a(w, w).

TE‘rh

The proof is completed. (]
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