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The general autoregressive time series of arbitrary but known finite order are of special
importance. Meanwhile, special distributions, as the normal distribution, exponential, Laplace
or some others, impose quite different existing conditions. This problem have to be solved for
each distribution separately. The order of the time series is of great importance in specifying
the existing conditions. GAREX(2) model and some of its special cases are considered in this
paper. The correlation structure and the spectral density of the model are discussed.
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1. Introduction

According to the intention of generalizing the models of time series,
Malisié¢ ([4]) has suggested some type of generalization for the first order autore-
gressive time series with exponential £(A) marginal distribution, the so called
AREX(1). He has also proposed some new possible special cases like FAREX(1)
and SAREX(1). The idea of expanding definitions of EAR(2) (Lawrance and
Lewis [2]), NEAR(2) (Lawrance and Lewis [3]) and AREX(2) (Malisi¢ [4]) time
series to some general case with exponential marginal distribution has been
accepted and the model GAREX(2) - General AutoRegressive EXponentially
distributed second order time series, is defined and discussed in this paper.

We suggest the definition of the autoregressive time series with exponen-
tial £(A) marginal distribution which is ”pure” autoregression with some posi-
tive probabilities p; > 0, p2 > 0 and positive coefficients of the autoregression
a; > 0, az > 0, respectively.

The above mentioned first order autoregressions ha,ve been treated by
means of the random coefficient representation in Popovié ([5], [6] and [7]). The
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appropriate random coefficient representation of GAREX(2) will be given in this
paper.

2. Existence of the model

We shall consider time series {X,, n € Z} and {€n, n € Z} that are the
mixtures of distributions and are semi-independent (X, and ¢; are independent
iff n <t). .

Definition 2.1. Let {E,, n € Z} be the sequence of i.i.d. random

variables with exponential £(A) marginal distribution. Let i, a2, 81, B2, Po,
P1, P2, 1, and g2 be nonnegative real numbers such that:

(A1) 0 < po,p1,P2< 1,
(A2) 0<q1,251,

(A43) po+p1+pz+§1+qz=1,
(A4) 0< ay,a3,B1,82<1,

- u—/u? —4v(po+ @1 + @)

b
(A5) ! 2(po + q1 + g2)
by = Ut Vu? —4v(po + a1 + ¢2)

2(po + ¢1 + 2)

where u = poB1 + poBa + @182 + @251, v = poP1Ps, and if p(z) = (v + ;1 + P2 +
prag + p2ay — a1 — a2)T + a1z — pr1og — paay — v, then

(A6) p(b1) > 0.
Let, also, exact one of the conditions (B1)-(B3) be satisfied:

(B1) by < min{ay,az} < min{B1, B2} < bz < max{e, s} < max{f1, Bz},
p(b2) < 0;

by < min{B1, B2} < bz < a1, as < max{p1,B2},

(52) p(b2) > 0;

(33) b1 <o,z < min{ﬂl,ﬂg} < bz < ma.x{ﬂl,ﬂg}.
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Then the sequence {X,, n € Z} which is defined as the mixture of distributions:

En, w.p. Po
a1 Xn-1, w.p. M
(21) X, = a2 Xn-2, w.p. p2, MNE Z,

B1Xn-1+En, wp. @
ﬂZXn—‘Z + €ny, w.p. @q2

where
E,, w.p. T
aE,, w.p. 2
(2-2) 87; = azEn’ w-p- 1‘3
blEn, w.p. T4
boE,, w.p. 75
v = (1=51)Q1 = B2)
" (Po+ a1+ g2)(1 = b1)(1 = b))’
y = p1(B1 — a1)(e1 — B2)
(po + @1 + 2)(ay — b1)(ay — b3)’
(2.3) , p2(B1 — az)(az — B2)

*Totat — by)(z — b)’
e qzzl(’?'i B ;()gla = ﬁz)zla(bl)

T4 = — — — — s
(Po+aq + QZ%I()I;I_ ,63?1):12 - %3;1&2) az)(by — b2)

5= (o + @1 + 42)(bz — 1)(bz2 — 01)(b2 — a2)(bz2 — b1)’

is the wide sense stationary time series GAREX(2) with £(\) marginal distribu-
tion. 5]

Really, let ®x(s) and ®.(s) be Laplace transforms corresponding to the
random variables of two sequences {X,} and {¢,}. As these sequences are wide
sense stationary and semi-independent, it will be

Ox(s) —p®x(a1s) — pa®x(a28) A+ Bi18)(A + B28)P(s)
Po+ a1®x(B13) + ©2@x(B2s) — (A+38) (A + 18)(A + 229)Q(s)’

d.(s) =

where
P(s) = (A + a18)(A + @28) — p1(A + 8)(A + az8) — p2(A + 8)(A + a18)
and

Q(3) = poP1B2s® + (poPr + PoP2 + @Bz + @2B1)As + (po + @1 + q2)A>.
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It follows that @Q(s) has two distinct real roots:

—u—+D - VD
K, ik, 4 P ZUt VI D=u?—do(pot+ q + )
2v 2v
 If we set
A A
bl = —';;7 by = _g’

it will be 0 < b; < b2 < 1. Now ®.(s) becomes

A(A + Bis)(A + B23) P(s)
(Po+ @1 + @2)(A + 8)(A + e18)(A + azs)(A + b13)(A + b2s)”

- ®.(s) =

Under the conditions (B1)-(B3), there are no multiplying roots of the last de-
nominator. So,

B (s)=r A +r : +r A +r A +7r
) N e T T are | CA+azs | A+018 | PA+ bgs’

where coefficients 7;,i = 1,2,...,5 must be defined to be probabilities with sum
one and ®.(s) to satisfy (2.4). The solution of this problem is obvious because

of the equalities
a181(B1 — B2)

G =Abe =P = o T

and
¢2P2(B2 — B1)

(b — B2)(bz — B2) = ot n T n

and the inequality b; < bs.

It follows that b; < min{B:1,82} < b2 < max{Bi,B2}. So, finally, we
can see that r; will be greater than zero if b, < @1 < max{f1,B2} or b <
a; < min{B,B2}, ra will be greater than zero if by < az < max{f, B2} or
b1 < a3 < min{pB, B}, and r4 > 0 and 75 > 0 if exact one condition of (B1)-
(B3) is satisfied.

3. Correlation structure of the model

In spite of so many conditions for the existence of the model, the corre-
lation structure follows the second order difference equation that characterizes
usual second order autoregression.
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Theorem 3.1.  Under the conditions of Definition 2.1, GAREX(2)
time series has the real valued absolutely summable autocovariance function

K, = Cov(Xp, Xn4r) =
_ (1—11.2)R+’U1(1+’U2) (u1+R)IrI+
- 2)2(1 — u2)R 2
1—u)R—ui1(14+u uy — R\
(3.1) + ( 2,2\)2(1 — ulz()R 2) ( 1 3 ) cosm|r|,

where uy = prey + 1B, Uz = P2aa + g2B2 and R = \/ul + 4u,.

Proof. The autocovariance function K, is the solution of the difference

equation
K, =wuK, 3+ uK, 2

corresponding to the difference equation of the autocorrelation function
Pr = U1pr—1 + U2pr—2,

for the initial conditions -

— g

po=1, pp=7

and the property of stationarity X_, = K,.
The absolute summability of the autocovariance function K, follows from

the fact that —1 < (u; — R)/2< 0 < (u1 + R)/2< 1. %

Corollary 3.1. If the conditions of Definition 2.1 are satisfied, GAREX(2)
has the real valued spectral density
1
fr) = 47 A2(1 — uz)R %
[(4 - (u1 + R)z)(ul + R+ uz(u1 - .R))_L
4 —4(u; + R)cost + (w3 + R)?
+(4 - (u1 - R)z)(ul - R + 'uz(ul + R))
4 — 4(uy — R) cosT + (u1 — R)? )

If we consider the bispectrum of GAREX(2), we will find out that it will
be represented by the second order nonhomogenious difference equation
C(ry8) = E[(Xn=2A"N)(Xn—r =A™ ) (Xn-s =AY =
= yC(r—1,8—1)4+uC(r—2,s—-2)+Q,
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Q = w7 [Kroi 4 Koy + Koog + 377+ A7 [ Krog o+ Ko o+ Krst
+ A2+ (po+ @1 + @) E(en) [Krms + 277 -
- [K,—s + K, + K,] — A3

with the same indicial equation as was followed by the spectrum.

Make a point that uz = 0 gives some special cases of the first order
autoregressive time series. For instance, p; = g2 = 0 will produce AREX(1)
(Malisié [4]).

4. Random coefficient representation

The random coefficient representation gives linear form to the nonlinear
models. This is the usual way of interpreting mixtures of distributions (Chan
[1], Lawrance and Lewis [3], Popovié [5], [6], [7] and others). The same can be
done with GAREX(2).

It is easy to verify that the stochastic difference equation

Xn= Ul(n)X -1+ UZ(n)Xn—2 + VaE,

will represent autoregressive time series GAREX(2) (2.1)-(2.2) iff the conditions
(2) — (vii) are satisfied:

(i) {Xn, n € Z} is the sequence of identically distributed random variables
with £(A) marginal distribution.

(ii) {En, n € Z} is the sequence of i.i.d. random variables with £(A) marginal
distribution.

(iii) {Ur(n), n € Z}, {Uz2(n), n € Z} and {V,,, n € Z} are the sequences of
independent random variables with the following marginal distributions:
Uy (n) takes values o, 41 and 0 with corresponding probabilities p1, ¢1 and
1—p1 —q1, Uz(n) takes values az, B2 and 0 with corresponding probabilities
P2, g2 and 1—pa—qz, V,, takes values o, az, b, by and 1 with corresponding
probabilities 7z, r3, 74, 75 and r; for any integer n.

(iv) {Yn = (U1(n),Ua(n),Vs), n € Z} is the sequence of i.i.d. random vec-
tors with the following distribution: Y, takes values (0,0,1), (0,0, a1),
(Oa 0, a2)’ (0, 0, bl)a (0, 0, b2)a (ah 07 0)7 (02, 07 0)9 (.Bl’ 0, 1)’ (ﬂla 07 al)’
(ﬂl’ 0, a2)’ (ﬂlroy bl)’ (:31107 b2)’ (09 ﬂ27 1)7 (Oa ﬂ?v c'1)7 (0, ,aZa 02)1 (07 ﬂ2v bl)
and (0, B2, b2) with corresponding probabilities por1, por2, Po73, PoT4, PoTs,
P1, P2y G171, 172, 173, 174, @175, G271, G272, 4273, G274 and gors for all n.
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(v) The random vector Yy, is independent of the random variable E, for any
integer n.

(vi) X; and Y, or E, are independent iff ¢t < n.
(vii) Uy(n) and Uy(t) are independent iff n # t.

The parameters «;, B, b;, pi, ¢; and r; satisfy the conditions of Definition 2.1
except for the condition (A1) instead of which,

(A1) 0 < po,p1,p2 < 1
will be valid.

These conditions ensure £(A) marginal distribution of the time series, id
est the same certain distribution to all members of the sequence {X,, n € Z}.
It is important to remark that the random variable V,, E, is dependent of the
corresponding random coefficients U3(n) and Uz(n).

The advantages of the random coefficient representation of GAREX(2)
are many, but we will discuss only invertibility of the process.

Theorem 4.1. Under the conditions (i) — (vii), difference equation
(4.1) has unique o,-measurable, stationary, strictly stationary and ergodic so-
lution of the form

)
(4-2) Xn= E An-—jVn—j—lEn—j—l + Vo E,,
3=0
where

(4.3) A, =Ui(n), Ap—j = Apn_jn1Ui(n = §) + Bn—j41, 1 =1,2,...

(4.4) B, = Uy(n), Bp—j = An—j+1U2(n - j), j =1,2,...
and o, is the o-field generated by the set of random vectors {(Ui(t), Ua(t), Vi, Et),
t < n}.

The prove of this theorem is given in Appendix.

It is important to remark that the sum (4.2) is finite almost sure, namely:

Theorem 4.2. Under the conditions as in Theorem 4.1, the sum (4.2)
will be finite (with random number of terms) with probability one.
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Proof. If we set I, = V,, E,, we shall have the solution

o
X = ZAn—jIn—j—-l + I,

=0

where A; and I, are independent iff ¢ # s. The sequence {I,,, n € Z} is the
sequence of i.i.d. random variables. To complete the proof of the theorem, it

will be enough to show that 3722, P{An—; # 0} < co.
It is easy to verify that

6 M).(2+_M)j+

P{An_; #0} = P{4n-; >0}= ('2' MW/ 4p 2 2

0 2 /62 J
(4.5) & 6__6+2p |\ (6_VOP+ap ,j=0,1,2,.

6244
o 4 T _ g

where 0 = p; + q1, # = p2 + ¢2 and it is obvious that 0 < 3
-1<§- @ <0.
Really, by induction on k, we can prove that P{A,—x+1Bn—k+1 > 0} = 0.
So, i
P{An—j >0} = P{An—jt1U1(n — j) > 0} + P{Bn_j1 > 0},

and (4.5) will be the solution of the second order difference equation
7 = 0mj_1 + pwj_2, w; = P{A,_; > 0},

for the initial conditions mp = 8, m; = 6% + u. The Borel-Cantelli lemma implies
that almost sure A,_; # 0 finitely often. -

5. Some special cases

According to Definition 21, the well known models NEAR(2) and EAR(2)

become special cases of GAREX(2).
Really, if a; = az = p; = p2 = 0 we shall have NEAR(2) and for

Po=P1=pP2=q =a2=0,q1 = l—ﬂz and q2 =ﬂ2 we shall ha.veEAR(2).
The similar will be concerning FAREX(2):

Let po =0, b= (q182 + ©261)/(q1 + @2),

q(b) = [(b— a1)(b — @2) = pr(b— 1)(b — 2) — p2(b = 1)(b — )] /b?
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and ajaz — prag — pea; > 0. Let, also, exact one of the conditions (C1)-(C.3)
be satisfied:

min{a;, a2} < min{By, B2} < b < max{ay, @z} < max{p, B2},

(1) q(b) < 0;

min{fy, B2} < b < 6.21,02 < max{B1, B2},
(€2 q(b) > 0;
(C3) ay, g < min{ﬂl,ﬂg} <b< ma.x{ﬂl,ﬂg}.

Then,
( B1B2(c1az — prag — paay)
0, o ajaz(q + q2)b
E,, w.p. (1= B1)(1 — B2)

+ 1-105)’
S 2N

¥ =0)°
B A o)

+ as;—0b0)’
. @t oS =) .
L (@1 + @2)(b—1)(b— 1)(b— a3)

Also the SAREX(2) model:
Let @y = b1, az = B2, p(b1) > 0 and p(b2) < 0. Then

(1-a1)(1—as)

en=1{ anE,, w.p.

a2 E,, w.p.

En, . ,
wp (Po+ @ +QQ)§1—bl)(1"b2)
en=<{ WE,, wp. p(b1)
" " (Po+ a1 + Q2)521 —1)(by — by)’
b E,, w.p. p(b2)

(po+ @1 + q2)(b2 — 1)(ba — by)’

" 6. Appendix
Proofof Theorem 4.1. By repeated substitution of

Xn-j=Ui1(n - j)Xn-j—1 + Ua(n — j) Xn—j—2 + Va—jEn_j, 3=1,2,...k
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into (4.1) and by induction on k, we obtain

k-1
Xn = Apk X1 + Bn—an—k—2 + E An—jVn—j—lEn—j—l + Vo FE,.
3=0

By means of the mean square convergence it will be

k-1
lim E(Xy ) An—jVn—j-1En—j-1 — VoEn)?

k—oo0 =0

= lim E(Ap—kXn—k-1+ BnkXn-k—2)? = lim E(A%2_.X2_,_))
k—oco k—oco

+ 2,}-1120 E(An—an—an—k—IXn—k-—2) + k]il%o E(B:-.kx:—k-z) = 0.
Really, A,,_; and X, ;-1 and B,_; and X,_jx_2 are independent because of
(vi). So,

lim E(A_ X2 1) =2)A"2un lim E(A]_;4;)+ 2272 lim E(B} ;)
k—o0 k—oo k—oo
and
Jm E(Bj i Xi-k-2) = 22 2ug Jm E(A%_k41)s

where u11 = E(U#(n)) and uzz = E(UZ(n)).
It follows that

unntup<pt+a+p+q<1

and that the sequence {E(AZ_; + B2_;), j = 0,1,2,...} is the decreasing one
with a lower bound zero.
The existence of the solution

o o] .
Wo=) AniVaj-1En_jo1 + VoEy,
7=0
has been proved.
The solution W, is obviously o,-measurable. To prove that {W,} is
stationary, it will be sufficient to prove that E(W?) exists. In order to do that,
we shall set the following:

k
Wn,k = E An—jVn—j—lEn—j—l + Vo, E,.
3=0



GAREX(2) Models: ... 155
Then

B(W?)

lim E(W2,) = lim E(Wyx— X,)?
k—o0 i k—oo
k
+ 2lim Y E(XpAp—jVaj-1En-j-1 + XaVaEn) = lim E(X?)
k—o0 =0 k—oo

k
2 lim > E(XnAn-;Va-j-1Bn-j-1+ XoVoEs) — 2272,
k—o0 =0

Now, we can consider E(X,Wp,) only:

k
E(XaWai) = Y E(XnAn—jVnoj-1En_j-1) + E(XzVaLn).

Jj=0
It is easy to verify that

u13 + U23 + 2u33
2

where u13 = E(Ui(n)Va), uzs = E(U2(n)Va), uss = E(V2).
But, if we set a; = E(XnAn-jVn-j—1 E,_j_1), we can find out that

E(X,VoE,) =

aj = AN 'E(An-jAn—j-1Va-j—1Xn_j-2)
+ AT'E(An—jBn-j-1Vn-j-1Xn-j-3)
J
+ AT2E(AnjVaoj1Va) + D bij
=0

where b;; = E(An-iAn—jVn-i-1 Va—j—1En_i-1En—j-1)-
So,forj=0

iy = u1u13 + v1101 + u11U23 + 2u11U22
= ¥ ,

and for j > 0,ie. j=1,2,...,k,

(u13 + u23)ej2 vie; g
a; = 3z Jes2 . :\2J+Zbij,

1=0

where v; = E(Va), ej = E(An;) and ejz = E(A2_;). Specially, b;; will be as
follows: :
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Ifi=j
b _ 2'&33 .
it = —,\7‘612-
Ifj>i,ie. j=i+1lforsomel=1,2,...,k,
2
v .
biiv1 = :\%yu,

o e;z u1+R)l+l— (‘ul—R)H-l
Ya = R 2 D)

and uy = E(Ui(n)), uz = E(Uz(n)), vi = E(V,) for any integer n and R =
uj + 4us.
As it is the fact that

where

ul-—R'
-2/
and
0<¥<1,

it follows that :
Jm _,Z=; % =0.

The existence of the second moment of W,, has been proved.

The solution W, is strictly stationary. Really, the mean square con-
vergence of the o,-measurable random variables W, ; with ¥ — oo, implies
probability convergence to the random variable W,,. Since the solution has the
same functional form for each n, {W,,} must be strictly stationary, as must be
{Xn}.

The sequence of random vectors {Y,} is an ergodic sequence since it is
the sequence of i.i.d. random vectors. The o-field o, x, generated by {X,,, X5—1,
...}, is such that o, x C o, if {X,.} is a 0,-measurable sequence. Let ox be the
smallest o-field containing lim,—.co 05, x and o be the smallest o-field containing
lim,,—,o 0y, then ox C o and it follows that {W, } is ergodic.

The last proposition we need to prove is the uniqueness of the stationary,
o,-measurable solution W,.

If we suppose the opposite, i.e. that there exist two different o,- mea-
surable, stationary solutions W, and G, of the equation (4.1), we can set
H, =W, — G,. As it will be true

W, = Ul(n)W -1+ Ug(n)Wn_g + VoI,
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and
Gn = Ui(n)Gno1 + Ua(n)Greg + Vo oy,

then
I, = Ul(n)H,,_l + Uz(‘n)][ —2,

where I1,, is also a,-measurable and stationary. It follows that
E(H2) = E(U{(n))E(H}_,) + E(UZ(n))E(H?_,).

Because of the stationarity of {Hy,}, it will be E(H2) = E(H2_,) = E(H2_,) =
hga. So, haa(1 — uyy — u22) = 0 and 1 — u3; — ugy > 0. It means that hoyga =0
and consequently P{H, =0} = 1. =

7. Some simulations

o S . il
1 12 23 34 45 56 67 78 89 100 111 122 133 144 155 166 177 188 199

Simulated sample for the GAREX(2) process, where pp = 0.1, p;. = 0.1,
p2 =04, q =02, g2 =0.2, oy =0.3, v = 0.78, fy = 0.4, f2 = 0.8
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)
45 1
44 i
35 -
3 -
25 4
2
154
1 1 ‘ u '
" bl L o L, LA 1.
1 11 21 31 41 51 61 71 81 91 101 111 121 131 141 151 161 171 181 191

Simulated sample for the GAREX(2) process, where pg = 0.1, p; = 0.1,
p2=0.1, q4 =0.3, g2 = 0.4, = 0.2, vz = 0.58, p; = 0.6, f2 = 0.8

i
i
I

| i
1 AN
i

o Sl ‘ ARt
1 11 21 31 41 51 61 71 81 91 101 111 121 131 141 151 161 171 181 191

Simulated sample for the FAREX(2) process, where p; = 0.04, p; = 0.26,
q1 =03,92 =04, oy =0.1, o3 = 0.5, §; =0.2, 3 = 0.8
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35 4

25 A

i 1N | I | i Al ‘ f
A R LRl | il R AR TR U

1 11 21 31 41 51 61 71 81 91 101 111 121 131 141 151 161 171 181 191

Simulated sample for the SAREX(2) process, where pg = 0.1, py = 0.2,
p2 =03, q =0.2,q2=0.2, vy = 0.4, 3 = 0.8
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