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1. Introduction

One of the main problems in the qualitative theory of differential equa-
tions is finding sufficient conditions for boundedness of the solutions. The in-
vestigation of this problem can be conducted with the help of different methods
one which is the direct Lyapunov method [3], [4], [7].

In the qualitative theory of impulsive differential equations the question
of using Lyapunov functions for investigation of boundedness of their solutions
arises also [5].

In the present paper we study the boundedness of the solutions of im-
pulsive differential equations by means of Lyapunov‘s method.

Differential equations with ”supremum” are adequate mathematical model
of different real processes. They find application, for example, in the theory of
automatic regulation [6]. As a simple example of mathematical simulation by
means of such equations we will consider the system for regulation of the voltage
of a generator of constant current. The object of regulation is a generator of
constant current with parallel simulation and quantity regulated is voltage on
the clamps on the generator feeding an electric circuit with different loads. The
equation describing the work of the regulator has the form ([6])

Tou'(t) + u(t) +q_max u(s) = S(2)
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where Tp and g are costants characterizing the object, u(t) is the voltage regu-

lated and f(t) is the perturbed effect.
We note that in the case when the solution of the considered equation is

continuous then the equation is called equation with “maxima” [1].

2. Preliminary notes and definitions

Consider the initial value problem for the nonlinear impulsive differential
equations with "supremum” (IVP)

(1) z' = f(t,2(t), s[uli ]z(s)) for t>to, t# m(2(t))
s€[t—A,t

(2) z(t +t0) = (t) for te€[-h,0],

3) z(t 4+ 0) = z(t — 0) + Ix(z(t)) for t= m(z(t))

where z € R®, f: [0,0) x R® x R® = R"*, ¢ : [-A,0] — R", I}, : R" —+ R",
k=1,2,3,..., to >0, h = const > 0, 7 : R* — (0, 00).
Introduce the following notation

or = {(t,z) € (0,00) x R" : t = 7i(2)}, k=1,2,3,...

We denote the solution of the IVP (1), (2), (3) by z(t;t0, %) and by
J(to, ) — the maximal interval in which z(;t0,¢) is defined. We will make a
description of the solution z(¢;tg, ¢) of the IVP (1), (2), (3):

(a) For t € [to — h,to] the solution z(t;%0, ) coincides with the function
p(t—1) .

(b) Let ; < 3 < ... < t; < ... be the moments at which the integral
curve of the solution of the IVP (1), (2), (3) meets the hyperfaces o4, k = 1,2,...,
i.e. ¢ is a solution of the equation t = 7;(z(¢;0,¢)) for I = 1,2,....

Then for t € [to,t1] the solution z(2;%0,¢) coincides with the solution
X1(t; to) of the differential equations with “supremum”

2= f(t9 z(t)v sup 2(3))
s€[t—h,t]

with an initial condition .
z(t + to) = ¢(t) fort € [—h,0].

For t € (t1,13] the solution z(2; o, ¢) coincides with the solution X(t;1)
of the initial value problem

z' = f(t,2(t), o ‘12(8))
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z(t+t1) = ¢1(t) for te[-h,0],

where (pl(t) = Xl(i+t1;t0) fort € [—-h, 0) and 301(0) = Xl(tl; to)+11 (Xl(tl; to))
and so on. Therefore the function z(¢;1o, ) is piecewise continuous in J(to, ¢).

Denote by PC(X,Y) (X Cc R",Y C R") the set of all functions v : X —
Y which are piecewise continuous in X with points of discontinuity of the first
kind at the points ¢; € X and which are continuous from the left at the points
t € X, u(ty) = u(ty — 0).

We denote by PC'(X,Y) the set of all functions u € PC(X,Y) which
are continuously differentiable for ¢t € X, t # i .

Introduce the following conditions:

H1. f € C([0,00) x R® x R",R").

H2. The functions Iy : R® — R", k = 1,2,..., are such that the
inequality ||z + Ix(2)|| < H holds if ||z|| < H and Ix(z) # 0, where H = const >
0. ’

H3. 7, € C(R",(0,00)), k = 1,2,... are such that 0 < 7(z) < 72(2) <
m3(z) < ... for 2 € R™ and limj_ o 7k(z) = oo uniformly in z € R".

H4. J(to, ) = [to — h,0) for to > 0 and ¢ € PC([-h,0],R").

We will note that for impulsive differential equations with variable impul-
sive perturbations it is possible that so called ”beating” of the solution occurs,
i.e. a phenomenon where the integral curve (t,z(¢;%o,)) meet several or in-
finitely many times one and the same hyperface. In the present paper we shall
consider problem of type (1), (2),(3) for which “beating” of the solutions is ab-
sent. We note that sufficient conditions for absence of phenomenon “beating”
of different type of impulsive differential equations are given in [2].

Introduce the following condition:

H5. The integral curve of each solution of IVP (1),(2), (3) meets for
t > to successively each one of the hyperfaces 74,k = 1,2,... not more than
once.

Defintion 1.  The solutions of the initial value problem (1),(2),(3)
are said to be uniformly bounded, if for every @ > 0 and for any # 2> 0,
there exists § = B(a) > 0 such that for each ¢ € PC([-h, 0], R™) such that
sup{||¢(t)|| : t € [-h,0]} < a the inequality ||z(¢; to, ¥)|| < B holds for t > to.

Definition 2. The solutions of the initial value problem (1), (2),(3)
are said to be uniform-ultimately bounded, if there exists B > 0 such that
for every @ > 0 and to > 0 there exits T = T(a) > 0 such that for each
¢ € PC([—h,0], R") such that sup{[l¢(?)|| : ¢t € [-h,0]} < a the inequality
Ilm(t;to,cp)ll < B holds fort > tog + T. :
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We will say that the function V(¢,2) : [0,00) X R" — [0, c0) belongs to
the class W, if V(¢,z) is a continuous function and V'(t,z) is locally Lipschitz
in 2.

We define the derivative of the function V'(¢,z) along the trajectory of
the initial value problem (1),(2),(3) as follows

(4) V/(t,9(0)) = lmsup(1/){V (4 6,2(t + 65 9) = V(6 H(O),

where ¥ € PC([-h,0],R").
We will say that the function a(t) belongs to the class K if a € C([0, 00),
[0, 00)), a(0) = 0, and a(t) is an increasing function.

3. Main results

We will obtain sufficient conditions for uniform boundedness and for
uniform-ultimate boundedness of the solutions of the initial value problem (1),(2),
(3)

Theorem 1. Let the following conditions hold:

1. The conditions (H) are fulfilled.

2. There exists a function V € W such that

(i) a(llz|)) < V(t,z) < b(llz|l) for (2,2) € [0,00) x R", where a,b € K,
lim,_, o a(8) = oo;

(ii) There ezists a function p € K such that for each function ¢ €
PC([—h,0], R™) for which ||4¥(0)|| > H and for t > 0, t # m(¥(0)), k =
1,2,3... and p(V(t,¥(0))) > sup{V(t + s,v¥(s)) : s € [—h,0]}, the inequality
V'(t,4(0)) < 0 is valid;

(i5)V (140, 2+ Ix(z)) < V(tk, z) for ty = (), ||z|| > H and I(z) # 0.

Then the solutions of the IVP (1), (2), (3) are uniformly bounded.

Proof. Let @ > 0 be an arbitrary constant, {o > 0 be an arbitrary point
and ¢ € PC([—h,0],R") is such that sup{||¢(s)|| : s € [-1,0]} < .

We will assume that.the integral curve (,z(¢;%,)) of the solution of
IVP (1), (2), (3) meets the hyperface ok, k = 1,2,3,... at the point ¢, where
th <ty <tz <...,ie (tk,z(tk;to,¥)) € ox. From the condition H3 it follows
that limy_, tx = oo.

Consider the following two cases:

Case A. Let a > H.

Introduce the notations z(t) = z(t; to, ¢) and V(t) = V(t, z(t)). It follows
from the properties of the functions a(t) and b(t) that there exists a constant
B = B(a) > 0 such that b(a) < a(B8), B > a.
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Let t € [to — h,tp]. The condition (%), the initial condition (2) and the
choice of the function ¢ imply the inequalities

a([|lz(t; to, @)II) = a(lle(t—to)ll) < V(2 p(t—10)) < b(lle(t—to)ll) < b(a) < a(B).
Therefore,

(5) lz(t;to, )| < B for t€ [to — hyto].
We will prove that

(6) V(t) < a(8) for t>to.

Suppose the contrary, i.e. there exists a point ¢ > ?o such that V() >
a(B3). Introduce the notation

t* =inf{t > to : V(t) > a(B)}.

The inequality t* # mi(2(t*;t0,) for k = 1,2,3,... is valid or if there
exists an integer number j such that t* = 7;(2(t*; to, ¢) then I;(z(t*;to, ) = 0.
Indeed, if we suppose that there exists a positive integer m such that t* = ¢,
and I,,(z(t,,)) # 0, then the following two cases can be distinguished:

Case Al. Let ||z(tm)|| > H. Then it follows from condition (#ii) that

(7) V(tm +0) < V(tm) < a(B).

The inequality (7) contradicts the choice of the point t*.
Case A2. Let ||z(tn)|| £ H. We have from condition H2 of the theorem

that
(8) l2(tm) + Im(2(tm))l| < H.
From condition (i) we obtain that
V(tm) < b(ll2(tm)ll) < b(H) < b(e) < a(B).

The choice of the point ¢,, implies the inequality V (¢, +0) > a(8). From
condition (¢) we conclude that

Inequality (9) implies
lz(tm) + Im(z(tm)l| > a > H
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which is a contradiction with (8).

Therefore t* # tx, k = 1,2,3,... or the function 2(t) is continuous at the
point t*.

It follows from the continuity of the functions z(t) and V(t) that the
function V(t) possesses the following properties:

(P1) V() = a(B);

(P2) V(s) < a(B) for to—h <s<t%;

(P3) There exists a sequence {y,} such that ym >¢* and
liMm—oo Ym = t* and V(ym) > a(B).

We conclude from the above properties of the function V(¢) that

(10) vi@er) 2 0.
Condition (i) and the property (P1I) imply that
(11) b(llz(e*)ll) 2 V(t*) = a(B) > b(a).

From the properties of the function 5(¢) and the inequality (11) it follows
the inequality

(12) lz@Il > a 2 H.
According to properties (PI) and (P2) we get
V(t*,z(t*)) = V(t*) = sup{V(s) : s € [t* — h,t"]}.

We define the function %(t) € PC([—h,0],R") by the equality () =
z(t* + t; to, ) for t € [—h,0]. )

From the inequality (12) it follows that ||%(0)|| > H and p(V(t,%(0))) >
sup{V(t + s,%(s)) : s € [~h,0]}. Having in mind condition (i7) we conclude
that

(13) V/(t*, %(0)) = V'(t*, 2(t"; to, ) = V'(t*) < 0.

The inequality (13) contradicts the inequality (10).

It follows that the inequality (6) is valid for ¢ > to. From the inequality
(6) and the condition (i) we conclude that ||z(t)|| < B for ¢ > to.

Case B. Let a < H. Then we have the following two cases:

Case B1. Let ||z(t;t0, ¢)|| < H for t > to. Then the solutions of the IVP
(1),(2),(3) are uniformly bounded with a constant 8 = H.
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Case B2. Let there exists a point ¢ > to such that ||z(¢;t0,9)|| = H.
Denote 7 = inf{t > to : ||z(¢; to, ¥)|| = H} and consider the solution z(t; 9, %) for

t > 7, where ¥(t) = 2(t + 1; to, ) for t € [—h,0], sup{||[¥(t)||: t € [-h,0]} < H
and ||z(¢;to,@)|| < H for t € [to,n). It follows from Case A that for « = H

and ¢ = 1 there exists a constant 8 = B(H) > 0 such that ||z(t;n,¥)|| < B
for t > 5. Therefore the solutions of the IVP (1),(2),(3) are uniformly bounded
with a constant Hy = max(H,B(H)). -

We will obtain sufficient conditions for uniform-ultimate boundedness of
the solutions of IVP (1),(2),(3).

Theorem 2. Let the following conditions hold:

1. The conditions (H) are fulfilled.

2. There ezists a function V € W which satisfies condition (i) and (iii )
of Theorem 1.

8. There ezxists a function p € K such that for each function ¥ €
PC([-h,0],R"™) for which ||4(0)|| > H and fort > 0, t # 1(4(0)),k=1,2,3..
and p(V(t,¥(0))) > sup{V(t+s,9(s)): s € [—h 0]}, the inequality V'(t,v(t)) <
—c(||9|l) is valid where c € K.

Then the solutions of the IVP (1),(2),(3) are uniform-ultimately bounded.

Proof. From the properties of the function a(t) it follows that there
exists a constant B > 0 such that a(B) = b(H).

Let a > 0 be an arbitrary number, g > 0 be an arbitrary point and the
function ¢ € C([—h,0],R") is such that sup{||¢(s)|| : s € [-A,0]} < a.

Consider the following two cases:

Case A. Let « > H. Having in mind the proof of Theorem 1, it is easy
to verify that there exists a constant 8 = f(a) > 0 such that

(14) V(t) < a(B) for t2>tp.

Case Al. Let 8 < B. Then (14) and condition (¢) imply that
(15)  alle(tito,@)l) < V(t,2(tito, ) < a(B) < a(B),  t 2 to.

We conclude from (15) and the properties of the function a(t) that
(16) llz(t; to, @)l < B for t2>to.

The inequality (16) proves that the solutions of IVP (1), (2), (3) are
uniform-ultimately bounded.
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Case A2. Let 8 > B. Then a(B) > a(B) and consider the interval
A = [a(B), a(fB)]. Introduce the notation

(17) A=inf{p(s)—s:s€ A‘} > 0.

Let N be the smallest integer such that N > («(3) — «(B))/A. Define
the points 7; = to +j(h+2A4/c(H)), 7 =0,1,...,N. We will prove the validity
of the inequality

(18) V() < a(B)+ (N -j) fort>7j, j=0,1,...,N.

Let j = 0. Then 79 = to and the choice of N as well as the inequality
(14) imply that

(19) V() <a(B) < a(B)+ NA=a(B)+ (N —0)A for t> 1.

Therefore the inequalitiy (18) is fulfilled for 7 = 0.
Suppose that (18) holds true for j = 0,1,...,! (I < N). We will prove

that it is also fulfilled for 7 =1 + 1.
First we will show that there exists a point 7 € [y + h, 7141] at which the

inequality .
(20) Vit)<a(B)+(N-1-1)A

is valid.
Suppose the contrary, i.e. that the inequalities

(21) a(B)+ (N —1-1)A< V(t) < a(B) + (N - DA

are fulfilled for ¢ € [1; + h, T141]. :
From condition (7), inequalities (21) and the choice of B, we get that

(22) b(llz(t; o, #ll)) 2 V(2) > a(B) + (N — 1 - 1)A 2 a(B) = b(H).
It follows from the inequality (22) that
(23) llz(t; to,)|| > H for t € [+ hyTi41])-

The properties of the function p(t), the choice of the number A, (21) and
the inequalities a(B) < V(t) < a(B) imply that

(24) p(V(t) 2 V)+A>a(B)+(N-1A
' > sup{V(t+38):s€[-h,0]} for te€[n+h,n4s]
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From condition 3 of Theorem 2, inequalities (23), (24) and the properties
of the functions of the class K, it follows that

(25) V(1) < =c(l|z(t;t0, @)||) < —c(H) for t € [n+ h,T14a])

Choose a point & € [r + h + B,7141], where 8 = (141 — 1 — h)/2 =
A/c(H).We have from (21),(22), condition (i) and the inequality { —ni—h > 8
that

(26) V() = V(E-m—h)+V(n+h)
< —c(H)E-ni—h)+V(n+h)<a(B)+(N-1-1)A,

where v € (11 + h,§).
Inequality (26) contradicts (21). Therefore there exists a point 7 € [1 +

h,7i41) at which (20) holds true. We will prove that (20) is valid for ¢t > 7.
Suppose the contrary and denote

™ =inf{t:t>n,V(t) > a(B)+ (N —-1-1)A}.

Having in mind the choice of the points t* and t** as well as the continuity
of V(t) we conclude that the function V(¢) possesses the following properties:

(P1) V(i*)=a(B)+(N-1-1)A

(P2) V(s)<a(B)+ (N —-1-1)A for np<s<it™.

(P3) There exists a sequence {fm} such that g, > t** and
iMoo e = t** and V() > a(B) + (N —1-1)A.

It follows from the above properties of the function V() that
(27) V/(t**) > 0.

We have from conditions (i) and the choice of the point ¢** and the
constant 8 that

(28) b([l2(t™"s to, @) > V(™) 2 a(B) + (N — 1 = 1)A > a(B) = b(H).
The inequality (28) and the monotonicity of &(t) imply that
(29) lz(t™*;t0, @) > H.

Then from the properties (P1) and (P2) of the function V'(¢) and the
properties of p(t) we get that

(30)p(V(t*)) > V(t*) = a(B) + (N = 1= 1)A > V(s) for s € [n,2**].
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Inequalities (30), (31) and the condition 3 lead to
(31) V(125 to, P)II) < —e(ll2(t*; 20, @)II) < 0.

Inequality (31) contradicts (27).
The contradiction obtained shows that the inequality (20) is valid for
t > 1 and therefore for ¢ > 7141.
Thus, we proved the validity of the inequalitiy (18).
~ Set T =7n — 79 = N(h+2A/c(H)) > 0. Note that T depends only on
"« and not on to .
We have from condition (i) and inequality (18) for j = N that

(32) a(llz(tito, P)II) S V(¢) < a(B) for t>7n =to+T.

Therefore ||z(t; %0, ¢)|| < B for t > to + T which proves that the solution
of IVP (1), (2), (3) are uniform-ultimately bounded.

Case B. Let a < H. The proof of this case is analogous to the proof of
Case B of Theorem 1. ]

As a consequence of Theorem 2 we obtain the following result

Theorem 3. Let the following conditions hold:

1. The conditions (H) are fulfilled.

2. There exist a function V € W which satisfies the conditions (i) and
(iii) of Theorem 1. /

8. There exists a function p € K such that for each function ¢ €
PC([—-h,0],R™) for which ||$(0)]] > Q and fort > 0, t # 7(¥(0)), k =
1,2,3,... and p(V(t,4(0))) > sup{V(t + s,%(3)) : s € [—h,0]}, the inequality
V/(t,%(t)) < M - d(||¥(0)|]) is valid where d € K, Q = const >0, M =
const > 0, lim,_,o, d(s) = oo.

Then the solutions of the IVP (1),(2),(3) are uniform-ultimately bounded.

Proof. It follows from the properties of the function d(s) that there
exists a constant C = C(M) > 0 such that d(s) — M > 0 for s > C.

Define the function ¢ : [0,00) — [0,00) as follows ¢(s) = d(s) — M for
s> C and ¢(s) = (d(s) — M)s/C for 0 < s < C. The function ¢(s) € K. Then
the conditions of Theorem 2 are fulfilled with a constant H = maz(C,Q) and
therefore the solutions of IVP(1), (2), (3) are uniform-ultimately bounded. =

N

Remark 1. We will note that in the case when Ix(z) = 0 for
k =1,2,3,... the IVP (1), (2), (3) is an initial value problem for differential
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equations with "maxima”

2'(t) = f(t,2(2), ma.),ft]a:(s)) for t>0

z(t +to) = p(t) for t € [—h,0]

and Theorems 1, 2 and 3 give sufficient conditions for boundedness of the solu-
tions which are continuous functions.

4. Example

Consider the initial value problem for the following scalar impulsive dif-
ferential equation with ”supremum”

(333()2'(t) = — f(t)2%(t) + g(t)x(t) sup =z(s)+ h(t) for t > to, t # t

s€[t—h,t
(34) z(t+to) = p(t) for t €[-h,0]

(35) z(tk +0) = (1 + e )z(tr),

wherez € R,0<t; <t;<...,c=const, k=1,2,3,...

Let the following conditions hold:

Al. f e C([0,00),(0,00)).

A2. g € C([0,00),R) and there exist constants L > 0 and ¢ > 1 such
that f(¢) — L > q|g(t)| for t > 0.

A3. h € C([0,00),R) and there exists a constant M > 0 such that
|h(t)] < M for t > 0.

A4. limy_, oot = 00

A5. -2<¢ <0, k=1,2,3,....

A. g € C([=h,0], B).

Consider the function V(¢,z) = 22/2 which is of the class W.

Define the functions a(s) = s2/4, b(s) = s2, p(s) = ¢® s and d(s) = Ls.It
is easy to see that the condition (i) of Theorem 2 is fulfilled.

Let ¢ > 0 be an arbitrary point, the function 9 € C([-h,0],R), be such
that g|¥(0)| > sup{|¥(s)| : s € [—h,0]} and |(0)] > H. Then for s € [-h,0]
p(V(t,9(0)) = ¢V (2, %(0)) = ¢°¢*(0)/2 > ¥*(s)/2 = V(s,%(s))-
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We have for the derivative along the trajectory of solution of IVP (33),
(34), (35) that

VI 6(0) = —F()92(0) + 9(t)$(0) subeono ¥(s) + h(2)
36) < = J(E%?(0) + lg(@)I-1B(O)]| subpe_n o1 ¥(s)] + (D)
< —J(%?(0) + dla()I$*(0) + Ih(2)]

< M= Ly*0) = M~ d(|$(0)).

Inequality (36) shows the validity of condition 3 of Theorem 3. From
condition A5 the inequality

V(tk + 0,2 + exz) = 22(1 + ex)?/2 < 22/2, x #0.
Let |z| < H. Then the following inequalities are fulfilled
|z + ckx| = |2).|1 + ck| < H.J1 4+ cx| < H.

Therefore the conditions H2 are fulfilled.

We conclude by Theorem 3 that if conditions (A) are fulfilled, then the
solutions of the IVP (33), (34), (35) are uniform-ultimately bounded.

It follows from the inequality (36) that if H > (M/L)/? then all condi-
tions of Theorem 1 hold and therefore the solutions of IVP (33), (34), (35) are
uniformly bounded.
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