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Zero-range interaction and flame front equation are described. The approach is based
on the theory of self-adjoint extensions of symmetric operators and is analogous to the zero-
range potentials in quantuum mechanics.
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1. Introduction

As early as in the mid-1940s, Zel’dovich [15] proposed a qualitative ex-
planation for why cellular flames tend to form in mixture that a deficient in the
light reactant. In the framework of this model, linear analysis of the stability
of a plane flame front to long-wave disturbances yields the following dispersion
relation [2]:

o = Dy [2718(1 — Le) — 1]k2,

where 8 = E(T,—T,)/RT?, Le = Dyj,/ Do is the Lewis number of the limiting
reactant, assumed to be strongly deficient, o is the rate-of-instability parameter,
7;' is the wave vector of the disturbance of the flame front, & = | 7;; |, F =
exp(ot + tkr), E is a constant, specific to the reaction and called its activation
energy, R is the universal gas constant, 7, is the temperature of the unburned
cold mixture, at which the reaction rate is negligibly small, 7} is the temperature
of the burned gas, usually 5 to 10 times Ty; Dy,o is the molecular diffusivity,
D, is the thermal diffusivity of the mixture. The flame is stable only if the
mobility of the limiting reactant is sufficiently low (Le > Le = 1 — 2/f3). At
Le < Le. the flame is unstable. In a typical flame, 8 = 15, and so Le; = 0.87.
However, as it was pointed out later [13], a flame, though possibly un-
stable to long wave disturbances, is nevertheless always stable to short-wave
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disturbances. At Le = Le. the dispersion relation incorporating the relaxation
effect of short wave disturbances is

(1) o= Du[2718(1 = Le) — 1] k% — 4Dy L2, k4,

where Ly, is the thermal thickness of the flame defined as Dy, /U,, where U,
is the propagation speed of the flame relative to the unburned gas. Hence, we
obtain the following equation (in a nondimensional parameter-free form) for the
function z = F(z,y,t) describing the curved flame front [14]:

cF+ AF +4A?F =0.

R e m ar k. This equation may be obtained from the Kuramoto-
Sivashinsky one [14, 5]:

oF +27Y(yF)?+ AF +4A*F =0,

when the non-linear term is omitted.

To simulate a small obstacle for the flame or a small source, it is possible
to use the approach analogous to the zero-range potential method in atomic
physics [7]. Thirty years ago it was understood that to introduce a zero-range
potential means to construct a self-adjoint extension of a symmetric operator
[1, 9]. The mathematical approach reveals general features of different physical
phenomena and leads to the expansion of the range of applications of the method
(see, e.g. [10, 11, 12, 9] and references therein). That is why the consideration
of laminar flame from the point of viev of the operator extension theory seems
to be useful.

2. Description of the model

Let us describe a zero-range model for the equation (1). Let I = — A
—4A?, and Lo be the corresponding operator defined on the set of smooth
functions satisfying the condition:

D(Lo) = {u: u € Lo(R?), lu € L*(R?), u(r0) = ug (r0) = ug 5, (70) = 0}.

Remark. One can note that the functions from D(Lg) are continuous,
and their derivatives (of first or second order) are continuous too (u € C2, ) in
accordance with the imbedding theorems, that is, the boundary conditions at

the point @ = 0 are correct.
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Let J, be the Bessel transformation:

Fotw) = 0un) = [ VAR OVt

Lemma 1. ([6]) If f(t) = O(t*tY/2) fort = 0, a+v +5/2> 0, f(t) =
O(tP*+1/2) for t — oo, B +2 < 0, then

f(w) (v>-1,u>0)
exists and

Fo(w) = O(u® *1/2), 0,0’ +1/2 > min{v, -3 — 5/2}.

Fo(u) = O(uf+1/2), w — 0,8 +1/2 > max{-1/2, —a — 5/2}.

Lemma 2. The closure Lo of the operator Lg is a symmetric one with
the deficiency indices (6,6).

Proof. The fact that the operator Ly is a symmetric one is evident. To
determine the deficiency indices, it is necessary to find the fundamental solution
p:

Ap + 4A0% + Ap = §(r — o),
corresponding to a regular point A (k? = A < 0) of the operator Lo. Using the
Fourier transform, one obtains

_ 1 [ zexp(i(z,1))
w(r) = or /1;2 424 — 22 + k2 dzdd,

where 2 = |2|. Using the well known representation of the Bessel function Jp [3,
4], one get

-1 * VzJo(z|r = rol)
e(r) = m/o yPe S Vz|r = 1ol dz.

Taking into account that

(24—4—122+4_1k2)_1 — (z4+4—1k2)—l+4—122(Z4+4—1k2)—1(z4_4—1z2+4—1k2)—1
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and using the table of the Bessel transformation, one comes to the following
expression for ¢ : ‘

o = (32ki~ HD (Vik|r — ro|) + B (V=ik|r — 7o)

(2) (7 = o) TN (Jo(4z°2 (42" + N)TH (42" = 22 + A)7H)(Ir = 7o)

: [

Lemma 1 allows to describe the behaviour of the second term of the
expression (2) near the point ro. To determine the deficiency elements of the
operator Lo, it is necessary to list such derivatives (,oa(c’]‘;;’l’), r = (z1,z2), that
belong to the space Ly(R?). The information about the behaviour of the function
 allows one to come to the conclusion that this fact takes place if and only if

j1 + j2 < 2. Hence, the deficiency indices are (6,6).

R em ar k. The situation is analogous to one for the operator A? ([8,

11)).

Using the von Neumann theorem one.comes to the following lemma.

Lemma 3. The domain of the adjoint operator Ly consists of the set
of functions

2 2
’ll,(’l') = Z cl',j‘P:z:.',:cj(T) + Z Ci(,om_i(’l‘) + Cogo(’l‘)

ij=1 =1
2 2
(3) +E('r)(a0 - Zagz; + Z aijgijzixj) + UQ(’I‘).
=1 1,7=1 i

Here ug € D(Lo),g9i; = 1,1 # Jygi; = 274, 4,7 = 1,2,e(r) - smooth
cutting function: e(r) = 1,|r| < 1; &(r) = 0, |r| > 2, ¢ is the fundamental
solution. The function (L&u)(r) at the point r (7 # 0) is computed as:

(Lo)(r) = lu(r).

The operator Lo has self-adjoint extensions, that may be classified by the
description of their domains. These domains are linear subsets of the domain
adjoint operator for the elements of which the following relation is valid:

I(u,v) = (Lgu,v) — (u, Lgv) = 0.
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The form I(u,v) is usually called the “boundary form”. Using the rep-
resentation (3) and taking into account the asymptotics of the fundamental
solution ¢ and its derivatives near the point 7o, one comes to the the following
lemma.

Lemma 4.

— u v u_ v u v u_ v u v u s v
I(u,v) = ageg — egag + E :(a.' c; —cjal) + z , (aijcij — G5 aq)°
i=1,2 1,7=1,2

It is necessary to select such linear subset of D(L§), that the form I van-
ishes on the elements of this subset, to construct a domain of self-adjoint exten-
sion of the operator Lg. It is an ordinary problem of the linear algebra in a space
C® (the space of the “boundary vectors” Up, Uy; Uy = (c§,c¥,ck, ey, cla, cl),
Uo = (a}, at, ay,a¥y, aly, a¥,)). As a result we obtain the following theorem.

Theorem. The operator L, (extension) is self-adjoint if and only if
Lo C Ly C Ly. Here D(L,) is such a linear subset of D(Lg) (having no exten-
sions) that one of the following conditions is valid for the boundary vectors of
any function from the set D(L,):

1) U= (UQ,U1), Uo = AU], A: CG — CG, A= A‘,

2) U1 =AU0,(1:CG->CG,A=A*,

3 Uo=a+y,Uh=p+A4y,
where «,f3 are vectors from arbitrary orthogonal fized subspaces N* and N—,
N-€C®%vy€eN,N=CCoNtoN~, A: N — N, the operator A is self-adjoint
and reversible.

It is this self-adjoint operator that gives us the correct mathematical
description of the zero-range interaction for the flame front equation.
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