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Let (X; A, B) be a triad such that A N B is a nonempty connected, locally path
connected, and semilocally simple connected subspace of X. Let Snp(X;A,B), n > 3, be
the sheaf of triad homotopy groups of the triad (X; A, B). For n > 3, Sa(X;A, B) is also
an abelian and regular covering space of AN B. In this paper, we give the relations among
the fibers, sections and cover transformations of Sn(X; A, B). We solve the lifting problem
for paths and arbitrary continuous maps. Finally, we determine the features of the group of
liftings to Sn(X; A, B).
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1. Introduction

Let (X; A, B) be a triad (i.e., X is a topological space and A, B are two
subspaces of X such that AN B # @) such that ANB is a connected, locally path
connected, and semilocally simple connected subspace of X. Let m,(X; A, B, )
be the n-th, n > 3, triad homotopy group of the triad (X; A, B) with base point
in AN B. For n > 3, m,(X; A, B,z) is an abelian group. Let 5,(X; A4, B) be
the disjoint union of the triad homotopy groups obtained for each @ € AN B,
ie, Sn(X;A,B)= \ mu(X;A,B,z). Then S$,(X; A, B)is aset over AN B

z€EANB 3
and the mapping ¢ : S,(X; A, B) — AN B defined by (o) = ¢([a]z) = , for
any 0 = [a]; € mo(X; A,B,z) C Sp(X; A, B), is a natural projection. Let zq
be an arbitrary fixed point of AN B and W = W (a¢) be a path connected open
neighbourhood of z¢ in AN B such that for any two points « and y in W, every
pair of paths in W joining 2 to y are homotopic in A N B with endpoints held
fixed. There exists such an open neighbourhood W for every points in A N B
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since AN B is locally path connected and semilocally simple connected. IFor any
xz € W, if v is a path from 2¢ to & for any z € W, then 7y induces isomorphism

(7*)71 : Wn(‘X; A7B7 :L‘o) - 7rn(X; A,B,.’L’)

for all n, defined by (7*)n([c0)z,) = [@]e for any fixed [co]z, € Tn(X; A, B, 2g).
Therefore we can define a mapping s : W(zg) — S,(X;A,B) with s(z) =
(7*)n([a0)zy) = [a]e € (X A, B,z) for every @ € W(ag). Clearly, s is well
defined: If 7 and -, are two paths in W from zg to z, then they are homotopic
in AN B with endpoints held fixed. Hence (77)n = (73 )n. Furthermore,

s(zo) = 1*([@0])zy € ™n(X;A,B,29) and @os=lpy.

We prescribe that all the sets s(W) = {[a], € Su(X;A,B): 2z € W} be
open sets. Then the set {s(W) : W C AN B} is a base for the topology on
Sn(X; A, B). In fact, if Wy, W, are any two path connected subspaces of AN B
and o € s1(Wi)Nsy(W2), then sy and s; agree at (o) = ¢([a];) = @, (z € Win
W>) and by the definition of the mappings s; and sz, 81(z) = sz(z) for every z €
WinWa, ie., s1(WiNW3) = so(W1NW;). Therefore o has a basic neighborhood
s1(W1 N Wy) inside s1(W;) = s3(W2). In this topology the mappings ¢ and s
are continuous. Moreover, ¢ is a local homeomorphism since on s(W) it has
a continuous inverse s. Therefore (5,(X; A, B),¢) is a sheaf of groups. It is
a sheaf of abelian groups for n > 3. The sheaf (S5,(X; A, B), ) is called the
sheaf of relative homotopy groups of the triad (X; A, B) [5]. The set ¢~ 1(2) =
mn(X; A, B,2) is called the stalk of the sheaf and denoted by 5,(X; A, B)), for
every € AN B. The continuous mapping s : W — 5,(X; A4, B) such that
pos = ly is called a section of S,(X; A, B) over the path connected open
set W C An B. We denote by I'(W, S,(X; A, B)) the collection of all sections
of S.(X;A,B) over W. A section s € I'(AN B, S5,(X;A4,)) is called a global
section. If 81,8, € T'(W, S,(X; A, B)) are obtained by means of the elements
[a1]z, [a2]2 € (X ; A, B, z), then we define

(81 + s2)(2) = s1(2) + s2(2) = [eu]e + [@2]e = [ + 2]

It is easy to see that I'(W, S,(X; A, B)) is a group with this point wise
addition operation.

Definition 1. Let the sheaves (5,(X; A, B), ) and (S,(Y;C, D), )
be given. It is said that there is a homomorphisi:: between these sheaves and it
is denoted by F' = (f, f*), if:

(i) f: (X;A,B) — (Y;C, D) is a continnous mapping such that

f(A)ycC, f(B)yc D,and f(ANB))Cc CND,
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(i) f*: Sn(X; A, B) — S,(Y;C, D) is a continuous mapping,
(iii) f* preserves the stalks with respect to f, i.e., fo@ =t o f*,
(iv) For every z € A, the restricted mapping

F*1 (Sa(X; 4, B))e : (Sn(X; 4, B))s — (Sn(Y;C, D)) ()

is a homeomorphlsm
= (f,f*) is called an isomorphism, if the mappings f* and f are
homeomorphlsms Then the sheaves S,(X; A, B) and S,(Y;C, D) are said to

be isomorphic.

Lemma. Let the sheaves S,(X; A, B) and S,(Y;C,D) be given. A
continuous mapping f : (X; A, B) — (Y;C, D) such that f(A) Cc C, f(B) C D,
and f(ANB) C CND, induces a homeomorphism of sheaves f* : Su(X; A, B) —
5a(Y;C, D) ([5])-

2. The sheaf of triad homotopy groups 5,(X; A, B)
as a covering space of AN B

Theorem 1. Let (X; A, B) be a triad such that AN B is a connected,
locally path connected, and semilocally simple connected subspace of X. Let
$.(X; A, B) be corresponding sheaf to the triad (X;A,B) and W = W(zo) C
AN B be an open neighborhood of xo-€ AN B. Then the group of sections
[(W, Sa(X; A, B)) over W is isomorphic to the stalk (Sn(X; A, B))x,-

Proof. Let us define a mapping ¢ : (W, S,(X; 4, B)) — (Sn(X; 4, B))z,
by ¢(s) = s(zo) for all s € T'(W, Sn(X; A, B)). Then ¢ is a homomorphism. In
fact, for all sy, so € I'(W, Sp(X; A, B)),

B(s1 + 82) = (81 + 52)(20) = 81(%0) + s2(w0) = P(s1) + ¢(52)-

The mapping ¢ is one-to-one. In fact, if ¢(s1) = ¢(s2), then s1(xo) = s2(20)-
By definition of a section, $;(#) = s2(«) for all 2 € W and so 8; = s2. ¢ is onto,
since for all 0, € (8.(X; A, B))s,, there exists a unique s € I(W, Sa(X; 4, B))
such that ¢(s) = s(zo) = @o.

Thus ¢ is an isomorphism. [}

We can state, as a result of Theorem 1, that the stalk (S,.(X; A, B))q,
completely determines the group of sections over W. In particular, if we take
W = AN B, then the stalk (5,(X; A, B))z, completely determines the group of
global sections over A N B.
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Now let (X; A, B) be a triad such that AN B be a connected, locally path
connected, and semilocally simple connected subspace of X. Let W = W (o) be
an open set in AN B. Then there exists a unique section s € I'(W, S,(X; A, B))
such that s(zg) = 0y, for any oz, € (Sn(X; A, B))s,. Since ¢|yw) : 8i( W) —

. W is a homeomorphism and s; = (@|s;w))™ ¢ 1 (W) = Vls,-(W) for all
i€

s; € (W, Sp(X; A, B)).

Therefore the open set W = W(xg) is evenly covered by ¢, and so ¢
covering mapping and (S,(X; A, B), ¢) is a covering space of AN B. For n > 3,
(S.(X;A,B),p) is called an abelian covering space since the stalk (or fiber)
(Sn(X; A, B))g, is an abelian group for every 9 € AN B.

Definition 2. A mapping ¢ : (S.(X; A, B),@) — (Sa(X;A,B),) is
called cover transformation of S,(X; A, B) if ¢ is a stalk preserving homeomor-
phism. That is, ¢ is a sheaf isomorphism and ¢ ot = ¢. We denote by T the
collection of all cover transformations of S,(X; A, B). It is easy to show that T
is a group under the point wise addition operation.

Theorem 2. The group T of cover transformations of Sn(X; A, B) is
isomorphic to the group T'(A N B, S,(X; A, B)) of global sections of AN B.

Proof. Let o, be an arbitrary element in S,(X;A,B) and let t € T.
Then there exists a unique element 8, € (S.(X; A, B)), such that t(o;) = 6.
By Theorem 1, there exists a unique section s € I'(A N B, S,(X; A, B)) such
that s(z) = o, for z € AN B. Then we write t(0,) = t(s(z)) = (t o s)(z) = 6z.
It is clear that t o s € T'(A N B, S,(X; A, B)). Thus we can define a mapping
¢ : T — T(AN B,S,(X;A,B)) by ¢(t) = tos, ¢ is a homomorphism. In
fact, for all t;,t, € T, 2 € AN B, s € '(AN B, S,(X; A,B)) and s(z) = 0 €
(Su(X; 4, B)),

$(t1 + t2)(0z) = [(t1 +12) 0 s](x) = (1 + t2)(3(2))
= t1(s(2)) + t2(s(2)) = (11 0 8)(2) + (t2 0 s)(x)
= ¢(t1)(o(2)) + ¢(t2)(o(2)).
The mapping ¢ is one-to-one. If ¢(t1) = ¢(t2) for t;,t2 € T, then for all
z € AN B, (t1 08)(z) = (t208)(z) => t1(s(z)) = ta(s(z)) = t1 = ta. Since tis a
homeomorphism, it follows that ¢ is onto. Therc:fore ¢ is an isomorphism. =
Corollary 1. Let (Sn.(X;A,B)),p) be the covering space of AN B.

The cover transformation group T' of (S.(X; A, B)), ) operates transitively on
¢! = (85.(X;A,B)); for every x € AN B.

According to Corollary 1, (5.(X; A, B),p)is a regular covering space of
AN B, since the cover transformation grov.p, T operates transitively on fibers of
(Sa(X; 4,B),¢).
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3. Lifting of paths and arbitrary continuous mappings
to (Su(X; A, B),9)

Now let 2o € AN B be any point and v be a path in AN B with initial
point . Then the mapping soy : I — 5,(X; A, B) is a path in §,(X; A, B) and
@po(soy) =7, where s € (AN B, 5,(X; AN B)). The path soy = 7* is called
a lifting of 4 from the initial point (so07)(20) = 0o over zo in S,(X; A, B). 7" is
unique since the mapping ¢|s(4 N B) : s(ANB) — ANB is a homeomorphism. If
F:IxI — ANBis a continuous mapping and o, € (S,(X; A, B))s, such that
@(0z,) = xo = F(0,0), then soF : I xI — $,(X; A, B) is a continuous mapping
such that po(soF') = F and (soF)(0,0) = 04, where s € T(ANB, §,(X; A, B))
and s(zo) = 0z,. Thus so F is a lifting of I to S,(X; A, B).

Then we have the following theorem.

Theorem 3. (Homotopy path lifting theorem) Let (X; A, B) be a triad
such that AN B is a connected, locally path connected, and semilocally simple
connected subspace of X. Let S,(X; A, B) be a corresponding sheaf (or covering
space) of the triad (X; A, B). Then:

(i) Let zo € AN B be any point and v be a path in AN B with initial
point zo. Then v has a unique lifting v* in Sp(X; A, B) with initial point o4,.

(i) Let F : I x I — AN B be a continuous mapping and let o, €
Sn(X; A, B) such that p(o5, = F(0,0). Then there exists a unique mapping
F*: IxI— S,(X;A,B) such that p o F* = F and F*(0,0) = 0z,.

Theorem 4. (Monodramy) Let (S.(X; A, B), ) be the sheaf of n-th
triad homotopy groups (or covering space of ANB) of the triad (X ; A, B). Let y*
and 6* be two paths in Sy(X; A, B) with common initial point o, and common
terminal point o,,. Then v* and §* are homotopic paths in S,(X; A, B) if and
only if p oy* and ¢ o §* are homotopic paths in AN B.

Proof. If v* is homotopic to §* by a homotopy F', then the homotopy
¢ o F' demonstrates the homotopy of ¢ o ¥* and ¢ o §*. Conversely, let z; and
z, denote the common initial point and common terminal point of ¢ o y* and
@ o 6*, respectively. Let G : I x I — AN B be a homotopy between the paths
@ ov* and ¢ o §*. On the other hand, if o, € S,(X; A, B), then there exists a
unique section s € T(A N B, S,(X; A, B)) such that s(21) = 0s,. Thus,

so(poy*)=9" and so(pod*)=246".

Furthermore, the mapping s o G = G* is a homotopy between the paths ¥* and
6*. This complete the proof. ]
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Now let 4 be a path in ANB with initial point 2o. As a result of Theorems
3 and 4, we can state that any lifting 7* of v in S,(X; A, B) with initial point
0zy € ¢~ (20) is a closed path if and only if the path 7 is closed in AN B.
Hence, S,(X; A, B) is a regular covering space of AN B.

In Theorem 3 we gave the “lifting” of paths in A N B to the covering
space S,(X;A,B). We study the analogous preblem for continuos mappings
f:(Y,%) — (AN B, o) such that f(yo) = w0, where Y is connected and locally
path connected topological space.

Theorem 5. (Homotopy lifting theorem) Let (Sn(X; A, B), ) be the
sheaf of triad homotopy groups (or covering space of AN B). of the triad
(X;A,B) and (Y,yo be a connected, locally path connected pointed topological
space. Let o5, € Sp(X; A, B) and 29 = @(0y,). Then:

(i) If f : (Y,y0) — (AN B, z0) is a continuous mapping such that f(yo) =
xo, then f has a unique lifting
f: (Y %) — (Su(X;A,B),04,)
such that @ o f = f. )

(i) If f : (Y,90) — (Sa(X;A,B),04,) is a continvous mapping and
F :Y xI — ANB is a continuous mapping such that F(y,0) = o(f(y)) for every
y €Y, then there exists a unique continuous mapping I’ : Y x I — S,(X; A, B)
such that F(y,0) = f(y) and po F = F for every y € Y.

Proof. (i) Let f: (Y,y) — (AN B,zp) be a continuous mapping and
0z, € ¢~ (20). Then there exists a unique cection s € I'(A N B, 5,(X; 4, B))
such that s(z¢) = 04,. Thus,
8o f : (Y’ yO) - (Sn(X’ Aa B)’ aro)
is a continuous mapping and ¢ o (so f) = f. Hence so f is a lifting of f to
Sn(X; A,B). Let us denote s o f by f. Since s is unique and ¢|s(A N B) :
s(AN B) — AN B is a homeomorphism, f is unique.
(i) Let f : (Y,% — (Sa(X;A,B),0s,) be a continuous mapping and
F:Y x I — AN B be a continuous mapping such that F(y,0) = ¢(f(y)) for
every y € Y. Hence f(yo) = 04, and there exists a unique section s € I'(A N
B, Sn(X; A, B)) such that s(2¢) = 04,. Therefore,s0 F: Y X I — S,(X; A, B)
is a continuous mapping such that
(s0 F)(,0) = s(F(y,0)) = s((f(v))
= (so9)(f(v) = f(v).
and so, @ o (so F) = F. If we denote so I by F, then F is the desired lifting.
Since s is unique and @|s(AN B) : s(AN B) — AN B is a homeomorphism, F
is unique. @
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Corollary 2. Let S.(X; A, B) be the sheaf of triad homotopy groups
of the triad (X; A, B) and (Y, yo) be a connected, locally path connected pointed
topological space. Let oy € Sp(X; A, B) and zo = p(0z,). If frg: (Y %) —
(S.(X; A, B)),04,) be any two continuous mappings such that ¢ o f=¢og,
then f = §.

Now we denote by L(Y, f,Sn(X; A, B)) the set of all liftings of f to
S.(X; A, B)). L(Y, f,5.(X; A, B)) is a group under the point wise addition of
functions. In fact, for any fi, fo € L(Y, [, 5.(X; A, B)) and y € Y, we have for
81, 82 € I‘(AOB Sn (X A B)),

(fi + )W) = fily)+ f2(y) = (s10 F)(y) + (s2 0 f)(¥)
= ;‘_lgfgy)) + s2(f(y)) = (51 + 82)(f(v))
= J3l¥y),

where s; + 82 € (AN B, $,(X; A, B)) and so f € L(Y, f, Su(X; A, B)). There-
fore the operation is closed. On the other hand, if O € T(A N B, $,(X; A, B))
is zero section, then O = O o f € L(Y, f, S.(X; A, B)) is the identity lifting.
The inverse of any lifting fis (f)~! = f~! o s™!. Since T(AN B, S,(X; A, B))
is commutative, L(Y, f, Su(X; A, B)) is commutative. Hence, the group I'(ANn
B, S.(X; A, B)) of global sections completely determines the totality of all lift-
ings of f to Sn,(X; A, B)).

We then have the following theorem.
Theorem 6. L(Y, f, S.(X; A, B)) is isomorphic to T(ANB, S,(X; A, B))

Then we have for everyx € ANB, L(Y, f, S2(X; A, B) 2 T(ANB, Sx(X;A,B)) =
T 2 (5,(X; A, B))a-

Now let (Y, yo) be a connected, locally path connected pointed topological
space and (X1; A, B), (X2;C,D) be two triad such that AN B, C' N D are
connected, locally path connected, and semilocally simple connected subspaces
of X; and X3, respectively. Let

F: (Y’yO) = (A n Ba$0), g: (Xl; Aa -B,w()) - ()(2; C”D’ 20)
be two continuous mappings such that f(yo) = ®o, g(A4) C C, g(B) c D,
g(AnB) c CN D, and g(xg) = z. By Theorem 5, f has a unique lifting
f: (Y,90) = (5n(X; A, B), 00

such that f = so f and ¢ o f = f, where 0,5 = s(2o) for a unique s €
I'(AN B, S.(X; A, B)). On the other hand, there exists a sheaf morphism

g% : Su(X1; A, B) = Sp(X2;C, D)



216 A. Serbetci

such that g*(o,) = 0, Where 0., = t(20) for a unique ¢t € I'(CND, S,.(X2,C, D)).
Hence the mapping ¢ o (g o f) is the lifting of h = g o f to 5,(X2,C, D)) and
to(gof)=g*o f. Hence we obtain a one-to-one correspondence between the
groups L(Y, f, Sn(X, A, B)) and L(Y, h, S,(X2,C, D)) defined by

¢(f)=g"of.
¢ is homomorphism. In fact, for any fi1, fo € L(Y, f,Sx(X1,A,B)) and y € Y,

¢(fr+ f2)®) =% (fi+ )W) =9*(h() + f(v)) )
= g*(f1(y)) + 9*(f2(v)) = (g% © f1)(¥) + (g% o f2)(¥)
= ¢(f1)(y) + ¢(f2)(y)-

We then have the following theorem.

Theorem 7. Let g : (X1;A,B,z9) — (X2;C,D,z) be a contin-
uous mapping such that g(A) C C, g(B) ¢ D, g(AnB) ¢ CND and
9(x0) = 20. Then there exists a homeomorphism between the groups of lift-
ings L(Y, f, Sn(X1; A, B)) and L(Y,h,S,(Xn;C,D)). Furthermore, if g is a
homeomorphism, then the groups of liftings are isomorphic.
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