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Let I be an algebraic closed field of prime characteristic p and G be a torsion abelian
group. In this paper we demonstrate that the normalized unit group V(/'G) of a group ring
I{G is a direct sum of countable groups, respectively is divisible or is algebraically compact if
and only if the p-component G, of G is identity. Besides, V(K Q) is a splitting group and the
quotient V(K G)/tV(KQG) is being described, where tV(KG) is the torsion part in V(KG).
A necessary condition is also obtained, the complement V(K G)/tV(KG) to be divisible, i.e.
V(I G) to be divisible modulo torsion.

Moreover, it is shown that if G is a direct sum of countables such that G/G} is divisible,
then G is a direct factor of V(K G) with a direct sum of countables complementary factor. But
if G/G, is not divisible, then G is not a direct factor of V(K G).

Finally, suppose that the arbitrary group G belongs to K, any class of abelian groups
such that G is a direct factor of V(K G). Then, each coproduct A = I_I G; so that G; € K for

i€l
all i € I, is a direct factor of V(K A). Thus in particular, it is proved that if G is a coproduct
of torsion-complete p-groups or if G is a coproduct of p-mixed algebraically compact groups,
G is a direct factor of V(IXG).
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Key Words: splitting groups, direct factors, torsion-complete groups, algebraically
compact groups

1. Introduction

Throughout the rest in this paper, let G' be an abelian group with torsion
subgroup tG and p-primary component G, R be an unitary commutative ring
of charR = p, F be a field of charF = p > 0 and K be an algebraic closed field
with the same charX = p. Thus RG, F'G and K G are abelian group rings with
1, with normed unit groups V(RG), V(FG) and V(K G), and p-components
S(RG), S(FG) and S(KG), respectively. All other notations from the abelian
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group theory are in agreement with [6, 11], and these from the group algebra
theory with [9, 10].

1.1. Direct Factor

In the theory of the group algebras, there exist some open problems (see
[10], p.178 and p.184) for the direct factor, namely:

(1) If G is p-torsion, then whether G is a direct factor of V(FG)?

(2) If G is p-mixed (i.e. tG = G)), then whether G is a direct factor of
V(FG)?

(3) If G is torsion, then G is not however a direct factor of V(FG). But
of some interest is the question when the last is true, for some restrictions on G
and F?

In this paper, we study these phenomena.

1.2. Splitting

(1) If G is torsion-free, then by a classical result of Higman [10], V(FG) =
G.

(2) If tG has only p-torsion, i.e. in other words G is p-mixed, then
probably V(FG) splits if and only if G splits.

() G splitting yields V(FG) splitting (see May [14], p.307), which is
however trivial (see Proposition 1 below).

(%) As we see, there exists a conjecture that G is a direct factor of
V(FG). So, if this assertion is true and V(FG) splits, then G splits too.

(3) If G is torsion, then when V(FG) splits? In this article, we investigate
this question.

2. Preliminary and main results

We start with the following necessary proposition.

Proposition 1. Let G = G, x M. Then V(FG) = V(FM) x S(FG).

Proof. Using the proposition from [1], we deduce V(FG) = V(FM) x
V((FM)G,) and so, S(FG) & S(FM) x S((FM)Gp). But M, = 1 and
hence F'M is semisimple by the well-known classical Passman criterion for
semisimplicity, [9]. Therefore F'M has a trivial nilradical, immediately we de-
tect S(FM) =1, and S(FG) & S((FM)Gp) = V((FM)G)) since charF'M = p.
Finally V(FG) = V(FM) x S(FG), which proves the formula. =

Let €, be a primitive n-th root of unity in the algebraic closure Fof F
and let U(F) be the multiplicative group of F. The following proposition holds.
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Proposition 2. Suppose that G is torsion and U(F(g,)) is divisible
modulo torsion, for each n which is an order of any element in G. Then V(FG)
is divisible modulo torsion.

P roof. By the above proposition, V(FG)/tV(FG) = V(FM)/tV(FM).
Now we need only to apply [17], and we are done. ]

Corollary 1. Let G be torsion. Then V(KG) is divisible modulo
torsion.

Proof. The field K is algebraically closed. Thus, U(K(en)) = U(K)
is divisible hence divisible modulo torsion [6], and from the above statement,
V(K@) is divisible modulo torsion. =

Lemma 1. Suppose A is abelian so that A = B x E. Then A splits if
and only if B and E both split.

Proof. Let A split. Furthermore A = tA x C. Moreover tA = tB X tE,
consequently A = tB x T and tB is a direct factor of B C A. Similarly for E.

Conversely, if tB is a direct factor of B and tF is a direct factor of F,
then tB x tF = tA is a direct factor of A. The lemma is proved. =

The next statement was announced in [2].

Theorem 1. (Splitting) Let G' be torsion. Then V(KG) is a splitting
group, i.e. V(KG) =tV(KG)x D, where D =1 if K is an algebraic cover of a
simply field or D is divisible torsion-free of rank max(|K|,|G/G,|), otherwise.
Moreover, if G/G) is infinite, then tV(KG)/S(KG) = H H Z(q™) or if

a#p |G/ Gyl
G/Gy is finite, then tV(KG)/S(KEG) =[] [ 2(¢™)
9#p |G/Gp|-1

Proof. Write down, G = G, X M. Therefore Proposition 1 does imply
V(KG) =2 V(KM)xS(KG). By virtue of [16] (see also [2]), V(K M) is divisible,
whence it is-splitting. That is why, Lemma 1 yields, V(K G) splits. Besides, by
virtue of Corollary 1, we obtain that V(K G)/tV(KG) is divisible. Further, the
proof is based on [15]. i

Now, we give a characterization of V(K G) for some important classes

of abelian groups. More specially, the following statement, announced in [2],
holds. :

Theorem 2. (Structure) Suppose G is torsion. Then:

(o) V(KG) is divisible if and only if G, is divisible.

(00) V(KQG) is algebraically compact if and only if G is algebraically
compact.
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(000) V(KQG) is a direct sum of countables if and only if G, is a direct
sum of countables.

Proof. By application of Proposition 1, V(KG) = V(K M) x S(KG),
since G = Gp X M, where M is p-divisible. Following [16] (see also [2]), V(K M)
is divisible.

(o) By the above observations, V(K G) is divisible if and only if S(KG)
is divisible. This is equivalent to SP(KG) = S(KGP) = S(KG),i.e. to G? =G,
i.e. to Gy is divisible. '

(00) V(K@) is algebraic compact if and only if S(KG) is algebraic com-
pact, because the divisible groups are algebraically compact (see [6]). As we
have seen in the proof of Proposition 1, it is valid that S(KG) = S((KXM)G,).
The field I is closed, hence perfect. So, KM is a perfect ring with no nilpotents
and therefore by [1], S(KG) is algebraically compact if and only if G, is the
same.

(000) V(KG) is a direct sum of countables if and only if S(KG) is one
also, which fact follows directly or by a result of Kaplansky-Walker ([6], p.63,
Prop. 9.10). But it is well-known that S(KG) = S((KM)G)), where KM is
perfect without nilpotents. By application of [12], S(KG) is a direct sum of
countables if and only if G}, is. This completes the proof. (]

Now, we can state the following theorem.

Theorem 3. (Direct Factor) Let G be a torsion abelian group so that
Gy is a direct sum of countables (in particular, let G be a torsion direct sum of
countable groups). Then:

(¢) If G/ G, is divisible, G is a direct factor of V(K G) with complement,
which is a direct sum of countables.

(00) If G/G) is not divisible, G is not a direct factor of V(KG).

Proof. Write G = G X M. Further, Proposition 1 implies V(K G) =
V(KM)xS(KG). Obviously, M is a direct factor of V(K M), since it is divisible.
From [12], G, is a direct factor of S(KGp), hence of S(KG), because clearly
S(KG,) is a direct factor of S(KG). Finally, G, x M = G is a direct factor
of V(KG). Moreover Theorem 2 implies that V(KG)/G is a direct sum of
countables.

Assuming G/G) no divisible, G is not a direct factor of V(K G), since
M 2 G/G, is not a direct factor of the divisible V(K M). The assertion is
fulfilled. =

We generalize now the above theorem to the following one.

Theorem 4. (Direct Factor) Let G be torsion whose G, is a direct
sum of groups of cardinality Ry or is simply presented. Then G is a direct factor
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of V(KG) provided G/G), is divisible. Otherwise G is not a direct factor of
V(KG). The complementary factor is a direct product of a divisible group and
of a simply presented p-group.

Proof. It follows by the same scheme as the proof of the above theorem,
but according to the main results in [7] and [13], respectively. ]

We continue with considering the action of some special conditions on
R and G that guarantee that G itself is a direct factor of V(RG). But first
and foremost, we summarize some known results; the best results for the direct
factor problem of p-groups, by this moment, are the following stated as below:

Theorem. In each of the following cases, the p-torsion group G is a
direct factor of V(FQG), namely:

(a) ([12,13]) G is totally projective (simply presented) and in particular,
G is a direct sum of countables. The complementary factor belongs to the same
group class as G, provided F' is perfect.

(d') ([18]) G is an A-group (which generalizes (a)). The complement is
still not fully known in general.

(b) ([7, 14]) G is a direct sum (= coproduct) of p-groups with the car-
dinality of each factor not exceeding Xy. The complementary factor is totally
projective (simply presented) assuming F is perfect.

(c) ([4]) G is summable with countable length. The complement is totally
projective presuming F is perfect.

(d) ([5]) G is a Cx-group with_ lengthG = X < Q. The complement is
totally projective provided F is perfect.

We need some preliminary results before stating and proving the central
theorems. So we start with the following major lemma.

Lemma 5. Let M < G and C < G, where C is p-torsion, 1 € P < R.

Then:
(*) V(PM)NV(RG;C)=V(PM;MnC).
(*¥*) V(RG)NRM =V (RM).
Proof. (%) Take z in the left hand-side. Therefore z = Z o m,
meM
Qn, € P and Za =1L meC for any m € M. But since mC N M =
m 0, m¢gC ’ ’

memC

—_ _J 1, meMnC
m(C'NM), we conclude that _Z i, = { 0. mgMnC Furthermore,
mem(MnNC)

it is a simple matter to see that @ € V(PM;M N C), whence the left relation
”C” is fulfilled. On the other hand, because M N C is p-primary, we derive,
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V(PM;M N C) C V(PM) as a p-group. Thus and the right relation 727 s
valid, to finish the proof.
() Given z € V(RG)N RM. Hence z = ZTimi (ri € R, mj € M)

1
and there exists an element y € RG, say y = Za;g; (a; € R, g; € G), such

1
that Z MY Z Q;g; = E riaymig; = 1. We will show that y € RM. In fact,
1 . 1 1,
without loss of generality vje may assume that mygy = mags = -+ = mpgr = 1
for any fixed k£ € N, such that ayri+agre+- - +oxry = 1. Let now ! > k(I € N);
then if g; € gjM = M for some j = 1,...,k, we have g € M. Otherwise, i.e.
if g & g;M = M, it is not difficult to verify that a; = 0. Finally, y € RM, as
claimed. Thus the right hand-side contains the left hand-side. The converse is
trivial. The lemma is true. =

Remark 6. The point (#+) was proved also in [9], but when R is a
field. Moreover the technique used there is different to that given as above.

We begin with the formulation of the following key matter of a technical
character.

Proposition 7. Suppose M,C < G, where C is p-torsion. Then
V(RG) = V(RM) x V(RG;C) if and only if G = M x C, where R is a field if
the necessity is fulfilled.

Proof. ”Sufficiency”. Because G = M x C, we deduce that RG =
(RM)C. Therefore for each z € V(RG) we establish z = chc, where z, €

ceC
RM. Choose T = Z 2. € RM. Evidently, 2 =% + Z zc(c—1). But C'is
ceC ceC\{1}
p-primary and thus obviously, 2?" = 7" for some natural k. Thus it is a routine
matter to see that T € V(RG) and consequently Lemma 5 yields T € V(RG)N
RM = V(RM). Moreover, select v = 1 +z7! Z x.(c — 1). Apparently
ceC\{1}

v € V(RG;C), and on the other hand, ¢ = Zv. So V(RG) C V(RM).V(RG; ).
In this light, Lemma 5 leads us to V(RM)NV(RG;C) = V(RM;MnC) =1,
since M NC = 1 by hypothesis. As a final, V(RG) = V(RM) x V(RG;C) as
desired. The first part is completely proved.

»Necessity”. Indeed, MNC C V(RM)NV(RG;C) = 1landso MNC = 1.
Now, for given z € G C V(RG) we can write 2 = (Z rim;)(1 +'Z a;;gii(1—

i

‘.'j
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¢i)) = Zrkmk + Ev'ka;'jmkg,-,j(l — ¢;), where rg, ;7 € R; my € M; g;; €
D ik

G, ¢; € C. Hence & = mgc or eventually 2 = m/g’ for some fixed m € M, m’ €

M; g € G, g’ € G; ¢ € C. Moreover, observing that ria; ;j # 0 for all k, 4, j, we

have that ¢ € M C or eventually ¢’ € MC. Finally, we derive x € MC = M xC

and this finishes the proof. The proposition is verified. ]

The next statement is important.

Proposition 8. Assume that A = I_, G; is a p-group. Then V(RA) =
i€l
I_'V(R( U G;); Gy), where J C I is a subset.
i€l jeJu{i}
Proof. Put I = A for some fixed ordinal A. Hence by our assumption
A= U G. Choose arbitrary a < A, and in this direction take B, = U G.

w<A <o
It is clear that By41 = Bs X G4 and so owing to Proposition 7 we derive

V(RBay1) = V(RBy) X V(RBat1;Go). In this light, it is easily seen that
V(RA) = U V(RBo+1;Go). In fact, A = I__I B, and so, again Proposition

a<) a<A
7 is transfinite inductively applicable to obtain the claim. The proposition is
shown. ]

Here we consider the direct factor problem for coproducts of abelian p-
groups. Now we are in position to state the following theorem.

Theorem 9. Let G be an abelian p-group belonging to any class K of
abelian p-groups such that G is a direct factor of V(RG). Then, A = I_I G with

i€l

G; € K for alli € I, is a direct factor of V(RA).

Proof. According to Proposition 8, we can write A = |_| Gy, and

. pu<A
V(RA) = | | V(R(| | Gu x Ga);Ga) = | | V(R | | GuiGa), where X = I.

a<A pu<a a<\ pla

By the hypothesis, G, is a direct factor of V(RG,). But on the other hand, G

is a direct factor of U G, and so, Proposition 8 guarantees that V(RG,) is a

nla
direct factor of V(R | | G.) = V(R | | Gui || Gu) 2 V(R | | Gui Ga) 2 G
ula ula nla ula

Thus G, is a direct factor of V(R |_| G,.), whence and of V(R LJ G Ga).

wla ula
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Consequently, V(RA) = (LJ Go) X M = A x M for some group M, since

a<A
A= I_J G, = I__] |_| G, = LI G. Finally A is a direct factor of V(RA), as
n<A a<\ p<la a<\
stated. The proof is finished. ]

The next assertion is only announced in [2].

Corollary 10. Suppose G is a direct sum of torsion-complete p-groups.
Then G is a direct factor of V(RG).

Proof. Indeed, we can write G = Ll G, where G; are torsion-complete

i€l
for all 7 € I. But every G; as a pure subgroup is a direct factor of V(RG/) owing
to the well-known Kulikov-Papp theorem [6], and thus, Theorem 9 is applicable
to obtain that G is a direct factor of V(RG), as claimed. u

Remark 11. The structure of the complement is unknown yet. Prob-
ably it is a direct sum of cycles.

Theorem 12. Let G be a torsion abelian group whose G, is a direct
sum of torsion-complete groups. Then:

(&) If G/G, is divisible, G is a direct factor of V(KG). »

(&) If G/G, is not divisible, G is not a direct factor of V(KG).

Proof. It follows by the same method as in Theorem 3 owing to Corol-
lary 10. ]

In the sequel we examine the direct factor problem for p-mixed groups.
The significant known facts on this theme may be found in (3, 8, 14]. Foremost,
we shall obtain a generalization of Theorem 9 for arbitrary commutative groups
and rings by means of another technique. So, we can formulate the next theorem.

Theorem 13. Assume that A is an abelian group and L is an abelian

ring. Then A = LI A; is a direct factor of V(LA) if and only if A; is a direct
1€l
factor of V(LA;) for each i€ I.

Proof. The necessity is trivial. For the sufficiency observe that the pro-
jection maps A — A; induce projections V(LA) — V(LA;). Since the elements
of group algebras have finite supports, these projections induce a homomorphism
V(LA) — U V(LA;), which is clearly the identity map on the inner coproduct

i€l
L_,V(LA,-) in V(LA). Thus, LIV(LA,-) is a direct factor of V(LA). That is
i€l el
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why, if we presume that A; is a direct factor of V/(LA;) for every i € I, then A
is a direct factor of V(LA), proving the more general theorem. ]

Next, we close the study with an extension, for p-mixed algebraically
compact groups, of a similar fact for algebraically compact p-groups that we
have given in [1].

Theorem 14. Let G be a coproduct of p-mized algebraically compact
abelian groups. Then G is a direct factor of V(FG).

Proof. Because G is p-mixed and hence V(FG) = GS(FG) [13, 14, 3,
4], it is a routine matter to be seen that G is pure in V(FG). Consequently
the result follows in view of the definition for an algebraically compact group
[6] and the latter theorem. The proof is over. n
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