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In this work, a non-linear differential equation which contains the squares of the theta
02(z)

01(z)’

functions and is also satisfied by w(z) = is established by using the known properties

of the theta functions 6;, 82, 63 and 64.
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1. Introduction

Definition 1.1. A lattice Q of complex numbers in an aggregate of
complex numbers with the two properties:
i) Q is a group with respect to addition,
ii) The absolute magnitudes of the non-zero elements are bounded below,
i.e. there is a real number k& > 0 such that |w| > k for all w # 0 in Q, [2].
The set
Q = {mw; +nws : m,n € Z}

is a 2-dimensional lattice, where w; and w, are linearly independent complex
numbers. The pair (w;, w2) which generates the lattice is called a basis of the
lattice. The periodic function f(z) is called doubly-periodic, if its period lattice
has dimension 2.

Definition 1.2. A uniform function which has no essential singularity
in a given region is said to be meromorphic function.

Definition 1.3. A doubly-periodic function which is meromorphic in
the open z-plane is called an elliptic function.
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Any fundamental region of period lattice is called a period-parallelogram
of an elliptic function. The number of zeros or poles (multiplicities are taken
into account) in a period-parallelogram of an elliptic function is known as the
order of the elliptic function.

Theorem 1.1. ([1]) A non-constant elliptic function of order one does
not exist.

2. O-theta functions and some properties

Definition 2.1. We define a theta characteristic, usually abbreviated

o e . i : € X
to characteristic, to be a two by one matrix of integers, writen as [ ,] . Given a
€

w

complex number z, and another complex number 7 = w_l’ satisfying Im7 > 0,
2

: . €

i.e., the upper halfplane, and a characteristic [5’]’ we define the first order

. . & £ .
general theta function with characteristic [e’] , argument z and theta period 7,

s . . e £
usually abbreviated to theta function with characteristic [6 ,] , by:

(1) 0[;] (2,7) = ;exp i {T(n + -;-)2 +2(n+ %)(z + -‘;—')} ,

where n ranges over all the integers (—oo to o) and exp is the usual exponential

function [5].
The first order general theta function can usually be thought as a function
of z only by assuming that ¢ and 7 are constants. Hence, it is also denoted by

£ . . . . .y
0 o (z). Moreover, the basis of period lattice of this function is taken as (r,77),

unless otherwise stated. w
If we put ¢ = €™ (where |g| = e ™™ < 1if 7 = —L =7 +isand s > 0)
w

and [1] , [1] s [0] and E’] for the characteristic [Z:l in (1), we get the following

1 0 0
four theta functions:
o0
(2) 01(2,(1) = 0[1] (Z,T) = —1 Z (_1)nq(n+;—)2eiz(2n+1),
n=—oo
1 & ixg s
(3) 02(2, q) = 0[0] (2’1-) . Z q(n+-2-) etz(2n+1),

n=—oo
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(o]

(4) 03(z,q) = O[g] (2,7) = E qnze’hriz,
and

0 5 n, n? 2miz
(5) 04(2,q) = 0[1](,3,7-): Z (-1)"¢" e ,

respectively. It can easily seen from the above equalities that these four theta
functions are periodic and also 6y, 6, have 27 as a fundamental period and 63,

64 have 7 as a fundamental period. Moreover, the zeros of the functions 6, , 02
T

™
, 03 and 6,4 are the points congruent to 0, 12"-, 5 + > and %r-, respectively.
The transformations between the func’gions 0, , 0, l03.a,nd 04 are given
by the following table, [1] (where N = ¢ 'e~?* and M = ¢ie**).

z z4+m |z47T z+Z [2+5+%F |2+ %

01(z) | —0:1(2) | —N61(2) | 62(2) | M~'0s(2) iM " 84(2)
02(2) | —02(z) | NOa(z) | —01(2) | —iM"04(2) | M~ 05(z)
03(2) | 0a(z) | NOs(z) | 0a(z) | iM 101(2) | M—"0x(2)
04(2) | 04(z) | —N64(2) | 63(z) | M~ 162(2) iM~160,(z)

Table 1.

Theorem 2.1. ([1,4]) We have the well-known identity:

01(0) = 62(0)83(0)64(0).

Theorem 2.2. ([1, 3]) The squares of the functions 61(z), 02(2), 03(2)
and 84(z) satisfy the following functional relations:

(6) 63(2)05(0) = 63(2)63(0) — 63(2)03(0),

(M 62(2)62(0) = 62(2)03(0) — 03(2)63(0).

After this prefice, we shall give the following main theorem.
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02(2)

Theorem 2.3. The quotient function w(z) = 5:(2) salisfies the non-
1

linear differential equation

(%)z = [63(0) + w?(2)63(0)][63(0) + w?(2)63(0))-

0
Proof. From Table I, we see that the function w(z) = 0—2(—3 has pe-
» 1

riodicity factors 1, associated with the periods = and 77 respectively. That
is,
O2(z + ™) _ —05(2)
O(z+7m) —61(2)
_ba(z+7T)  NbO(2) _ _ =1 _-2iz
w(z+ 1) = Bt ) - NG —w(z), (N =q e ).

The derivative function

—(Lw(") _ 05(2)01(2) — 61(2)63(2)

dz " 02(z)

w(z+7m)= = w(z),

of w(z), has also the same periodicity factors F1, due to within the same periods.
Then we have

d d d d
Ew(z +7)= -é;w(z), —w(z+7T) = —Ew(z).

dz
Again with the aid of Table 1, it can be easily shown that w;(2) = 03—(;2—)—(0‘-:)(—@ has
also the periodicity factors F1, associated with the periods 7 and 77 relspectively.
Now consider the function
04(2)01(z) — 61(2)02(2)
8 2) = 2 1
(8) ¥(2) 85(2)0a(2)

which is indeed the ratio of Ed;;w(z) to wy(z). The function ¥(z) is doubly-
periodic with periods 7 and 77, having simple poles at the zeros of 03(z) and

04(2). Therefore, the simple poles of ¥(z) are at the points congruent to g+ 5

T
cand — .

Using Table I, we notice

m,_ d [6(z+43) 03(z+ %)
v+ 2) ~ dz [01(z+ %)] 03(z+ 5)04(z + %)
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d [—Bl(z)] 02(z)

= dz 02(2) | 04(2)03(2)
(0 + B _
_ % ) = (2).

This implies that (z) is doubly-periodic with periods 7 and —725 On
account of the fact that 9(%) = %(0) # oo and z = 0 is not a pole of (), it
follows that t(z) has no pole at z = % So, the only pole of ¥(z) is the point

T

T
z= 5 Hence, () is a first order elliptic function with the periods = and 5

and according to Theorem 1.1 it must be a constant. Thus,

One can find out that

C = -6(0)
by using Theorem 2.1 and the fact that 6,(0) = 0 making z — co. Writing C
in (9) we obtain

From (10) we deduce

d [92(2)] 61(2) 63(0),

dz | 01(2)] 03(2)04(2) ~
d [6:(2)] _ 03(2)04(2)
PP [0f(z)] =50 "G5

We raise the squares of both sides to obtain

(%) _ 63(0)83(2) 63(0)63(2)
i) T8k 8G)

We consider the functional relations of Theorem 2.2 to get

(11) (@)2 _ 63(2)63(0) + 63(2)63(0) 83(2)63(0) + 67(2)63(0)
=) 63(=) 62(7) :

The above differential equation reduces to the form
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dw\?
@) (52) = O+ RO (RO + v RO,
by writing w(z) = 216 in (11). ]

61(2)
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