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There are various generalizations of the usual topological T3-axiom to topological
categorics defined in [1] and [7]. In this paper, a characterization of each of them is given
in the categories of filter and local filter convergence spaces. Furthermore, the relationships
among these various forms of 73 structures as well as some invariance properties of them are
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1. Introduction

Let & be a category and SET be the category of sets. The functor U :
& — SET is said to be topological, or £ is said to be a topological category
over SET, if U is concrete (i.e. faithful and amnestic, i.e. if U(f) = id and f is
an isomorphism, then f = id), has small (i.e. sets) fibers, and for which every
U-source has an initial lift or, equivalently, for which each U-link has a final lift,
[8] or [10].

Observe that for a T} topological space X, X is T3 iff: (a) X/F is Ty if
it is Ty, where F is any nonempty subset of X; (b) X/F is PreT; (for any two
distinct points, if there is a neighbourhood of one missing the other, then the
points have disjoint neighbourhoods) if it is 73, where § # F in X; (¢) X/F
is PreT, for closed ) # F in X. The equivalence of (a), (b) and (c) follows
from the facts that for T} topological spaces, T% is equivalent to PreTy and F
is closed iff X/F is T3.

In view of (c¢) and (d) from [1], there are four ways of generalizing the
usual T3 separation axiom to arbitrary set based topological categories. In view
of (a) and (b) from [7], there are four more ways of generalizing the usual T3
separation axiom to arbitrary set based topological categories.

In this paper, we give a characterization of all T5-objects in the categories
of filter and local filter convergence spaces. Furthermore, we investigate the
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relationships among various forms of the T3-objects in these categories and give
some invariance properties of them.

1.1. Let A be a set and K be a function which assigns to each point
z of A a set of filters (proper or not, where a filter a is proper iff a does not
contain the empty set 0, i.e. a # [0] (the "filters converging to x”) is called
a convergence structure on A ((A4, K') a filter convergence space), iff it satisfies
the following two conditions:

1. [z] = [{z}] € K(z) for each 2 € A (where [F] = {B C A: F C B}.

2. D a € K(=) implies B € K(z) for any filter S on A.

A map f: (A,K) — (B, L) between filter convergence spaces is called
continuous, iff a € K(z) implies f(a) € L(f(x)) (where f(«) denotes the filter
generated by {f(D) : D € a}. The category of filter convergence spaces and
continuous maps is denoted by FCO [12]. A filter convergence space (4, K) is
said to be a local filter convergence space if a N [2] € K(z) whenever a € I(2),
see [11], p.1374. The category LFCO of local filter convergence spaces is the full
subcategory of FCO, [11], p.1374.

For filters @ and 3, we denote by a U the smallest filter (proper or not)
containing both « and B, ie. aUB ={M C A:UNV C M for some U €
a and V € B}.

Let U : £ — SET be topological and X an object in £ with UX = B.
Let F be a nonempty subset of B. We denote by X/F the final lift of the epi
U-sink ¢ : U(X) = B — B/F = (B\ F) U {+}, where ¢ is the epi map that is
identity on B\ F' and identifying F with a point *. Let p be a point in B.

Lemma 1.2. (cf. [7], Lemma 1.4) Let a and 8 be proper filters on B.
Then q(a) U ¢(B) is proper iff either a U B is proper or both o U [F] and B U [F]
are proper.

Lemma 1.3. (cf. [2], Lemma 3.16)
(1) For a € B witha & F, q(a) C [a] iff a C [a],
(2) q(@) C [*] iff a U[F] is proper.

Lemma 1.4. (cf. [2], Lemma 3.19)

(1) If a U [F] is improper, then q(o) C q(a) iff o C «,

(2) If a U [F)] is proper, then q(o) C () iff o N [F] C a and o U [F] is
proper.

Lemma 1.5 Let X = (B, K) be in FCO or LFCO and ) # F C B.
(1) X is AT, iff for allz # y in B, [2] € K(y) iff X is Th, [3].
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2. X is ST, iff X is Ty and X/F is PreT; for all strongly closed F # 0
in U(X), [1]. B
3. X is T3 iff X is Ty and X/F is PreT; for all closed I’ # 0 in U(X),

(1].

4. X is T4 iff X is Ty and X/F is PreT; for all closed F' # 0 in U(X),
(1].

5. X is KT5 iff X is Ty and X/F is PreT, if it is Ty, where I # ( in
U(X), (7).

6. X is LTs iff X is Ty and X/F is PreTy if it is 77, where I # 0 in
U(x), (7]

7. X is ST iff X is Ty and X/F is ST, if it is Ty, where I # Pin U(X),
[7].

8. X is AT iff X is Ty and X/F is AT if it is T, where F' # §in U(X),
[71.

Remark 2.2. (1) For the category TOP of topological spaces, all of
Ty’s reduce to the usual T3 separation axiom by above (see Introduction) and
[7].

(2) I U : £ — B, where B is a topos [9], then Parts (1), (2), and (5)-(7)
of Definitions 2.1 do make sense since each of these notations requires only finite
products and finite colimits in their definitions. Furthermore, if B has infinite
products and infinite wedge products, then Definitions 2.1, (3), (4) and (8) also
make sense.

Theorem 2.3. X = (B,K) in FCO or LFCO is STs iff conditions
(1), (2), and (3) hold, where the conditions are:

(1) for all a # b in B, K(a) N K(b) = {[0]};

(2) for any nonempty strongly closed subset F' of X, a € B, and any
proper filters a, 6§ € K(a):

(i) if a ¢ F and U § is proper, then there ezists a filter B € K(a) such
that f C U §;

(ii) if a € F and either o U é is proper or both o U [F] and 6 U (F]
are proper, then 3d € F and a filter € K(d) such that either § C an é or
BN[F]Cané and BU[F] is proper;

(3) for any nonempty strongly closed subset F of X and any proper filters
a € K(c) and § € K(d) with c,d € F, if both aU[F) and §U[F] are proper, then
there ezists e € I and a filter B € K(e) such that BN [F] C ané and B U [F]
is proper.

Proof. Suppose X is ST3. Let o € (K(a) N K (b)) with a # b in B.
Then ¢(a) € K'(g(a)) N K'(q(b)), where £’ is the quotient structure on B/F
induced by the map ¢ : B — B/F that identifies F' to a point *. X is ST3, in
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particular X/F is Ty and so, by 1.5, ¢(«) = [0]. Hence a = [@]. This shows that
condition (1) holds.

Suppose that for any nonempty strongly closed subset I of X, a € B,
and any proper filters a, 6 € IK'(a).

Suppose @« € F and a U § is proper. Then, by 1.2, ¢(a) U ¢(6) is proper.
Note that q(a),q(8) € K'(¢(a)). Since X/F is PreTy, by 1.5, ¢(a n é) =
¢(a)Nq(8) € K'(q(a)). It follows from definition of K’ that there exists 8 € A'(«)
such that ¢(8) C ¢(an §). If (N &)U [F] is proper, then, by Lemma 1.3 (2),
q(an &) C [*] and thus, [*] € K’(¢(a)), a contradiction. Therefore, (a N é) U [F]
must be improper and by Lemma 1.4 (1), 8 C ané.

Suppose « € I' and either a U § is proper or both awU [F] and § U [[] are
proper. It follows from definition of I/ that there exists d € I" and there exists
B € K(d) such that ¢(8) C q(ané) and q(d) = * = ¢(q). If (aNé) U [F] is
improper, then, by Lemma 1.4 (1), 8 C ané. If (a N §) U [F] is proper, then,
by Lemma 1.4 (2), 8N [F]) C ané and B U [F] is proper. Thus, condition (2)
also holds.

Suppose that for any nonempty strongly closed subset I’ of X, any proper
filters a € K(c) and § € K(d) with ¢,d € F, a U [F] and § U [I'] are proper.
Then, by 1.2, ¢(c) U ¢(8) is proper. Note that ¢(a),q(8) € K'(*). Since X/ I is
PreTy, by 1.5, ¢(ané) = g(a)Nq(8) € K'(x). It follows that there exists e € F
and a filter 8 € K (e) such that ¢(8) C ¢(ané) and g(e) = *. Since (aNé)U[F]
is proper, by Lemma 1.4 (2), 8N [F] C ané and B U [F] is proper.

Conversely, suppose that the conditions hold. By (1) and 1.5, X is T3.
Suppose I is strongly closed subset of X. Note, by 1.6, that X/F is T. Hence,
it is sufficient to show that X/F is T, for any nonempty strongly closed subset
Fof X. Let « # yin B/F and 0 € K'(z) N K'(y). If ¢ = [0], then we are
done. Suppose o # [0]. It follows that there exist & € K(a) and 6§ € K(b)
such that ¢(a) C o, ¢(6) C o and ¢q(a¢) = x, q(b) = y. Notice that ¢(a) U ¢(6)
is proper, and so, by 1.2, either @ U é is proper or both a U [F] and é U [F]
are proper. By assumption (1), the first case can not occur. The second case
can not happen either, since F' is strongly closed subset of X (by 1.5, we may
assume that a« € I"). Hence, we must have o = [(].

It remains to show that for any proper filters 0,7 € K'(x) with ¢ U~y
proper, c Ny € K'(2). Let 2 # *. If 0,7 € K'(2), then there exist a,6 € K'(a)
such that ¢(a) C o, ¢(8) C v and ¢(e¢) = a = 2. It follows that ¢(a) U ¢(é) is
proper, and so, by 1.2, either « U § is proper or both a U [F] and § U [I'] are
proper. The second case can not occur since F is strongly closed subset of X
(by 1.5). Hence, we must have e U § is proper. By the assumption (2), there
exists 8 € K(a) such that 3 C ané. Note that ¢(8) C g(a) Ng(6) C o Ny and
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consequently, o N7 is in K'(2). _

Suppose z = * and 0,7 € K'(%), then there exist ¢,d € F and « € I(c),
6 € K(d) such that g(a) C o, ¢(6) C 7 and q(c) = * = ¢(d). It follows that
g(@) U ¢(é) is proper, and so, by 1.2 either a U § is proper or both a U [F] and
§ U [F] are proper.

If ¢ # d, then the first case can not hold since o U § € K(c)n K(d).
Thus, the second case must hold. By ‘the assumption (3), there exist e € F
and 8 € K(e) such that N[F] C an § and B U [F) is proper. Hence, ¢(8) =
a(BN[F)) = ¢(B)N[*] C o N7y and consequently oNv € K'(x), since by Lemma
1.3 (2), BU[F] is proper iff ¢(8)-C [+].

Suppose ¢ = d and either a U § is proper or both @ U [F] and § U [F] are
proper. Then, by assumption (2), there exist e € F and 8 € K(e) such that
BcanéorBN[F]Canédand BU [F] is proper. If the first case holds, then
¢(B) C g(@) N ¢(8) C o N7y and consequently, o Ny € K'(*). If the second case
holds, then ¢(8) = ¢(BN[F]) = ¢(B)N[*] C oNy and consequently, cNy € K'(*),
since by Lemma 1.3 (2), B U [F] is proper iff q(B) C [*]. Hence, by 1.5, X/F is
T, and thus, X is $T5. o

Theorem 2.4. Let X = (B, K) be in FCO or LFCO and F be any
nonemty subset of X such thatVx € B ifx ¢ F and a € K(z), then a U[F] is
improper. B

Then X is Ts iff X is STs.

Proof. It follows from 1.6, 2.1, and 2.3. [

Theorem 2.5. (Theorem 2.8 in [7]) Let X = (B, K) be in FCO or
LFCO.

(1) X is ATs iff X is Tx.

(2) X is STs iff X is STa.

. (8) X is LTs iff ST} iff for allz # y in B, [z] € K(z), for any nonempty
strongly closed subset F of B, € B, and any proper filter o € K(z) either
a=[z]orF€qa. ' '

(4) X is T4 iff for all z # y in B, [2] € K(y), for any nonempty subset
F of B, = € B, and any proper filter o € K () either o = [z] or F € c.

Remark 2.6. (1) For the Category FCO or LFCO, by 2.3, 2.4 and 2.5,
ST} = LT3 = T4 = ST3 = ATz and ST, = LTz = T4 = ST, = KTs = Tj but
the converse of each implication is not true, in general.

(2) By 1.5 and 2.5, if X is ST, LTs or T}, then all subsets of X are both
closed and strongly closed.

(3) By 1.5 and 2.5, if X is AT3, then F is always closed and F is strongly
closed iff Vo € B if z € F and a € K(), then a U [F] is improper.
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(4) By 1.5 and 2.5, if X is ST4, LT5 or T4, then X is Ty and LTy, [5].
(5) Let U : & — SET be topological and X an object in €.

In [7], we have showed the following implications:

T4 = T3, ST = ST, and LT3 = KTs.

Now we give some invariance properties of regular filter convergence

spaces.
Let X = (B, K) be in FCO or LFCO and F be a nonempty subset of X.
Let ¢ : X — X/ I be the identification map defined in introduction.

Theorem 2.7. If X is ST4, LTs or T4, then X/F is ST3, LT3 or Tj.

Proof. Suppose X is ST4. If [z] € K'(y) for some @ # y in B/F, where
K’ is the quotient structure on B/F then there exists @ € I(a) such that
[2] D ¢(a) and ¢(a) = y. Since X is ST4, by 2.5, @ = [a] or F € a. The first
case can not hold since [¢(a) = y] = ¢(a) C [z] and 2 # y. If the second case
holds, then by 1.3, ¢(a) = [*] and consequently, y = [*], i.e.,, g(a) =y = * = 2,
a contradiction, since X is ST3.

Suppose z € B/F and a is any proper filter in K’(2). We must show
that @ = [z] or F’ € « for all nonempty strongly closed subset F' of B/F.
It follows that there exists a proper filter # € K(a) such that @ D ¢(8) and
¢(a) = z. Since X is ST}, by 2.5, 8 = [a] or F € B. If the first case holds, then
[¢(a) = 2] = ¢(B) C a and consequently, a = [z]. If the second case holds, then
by 1.3, ¢(B) = [*] and so, a = [*]. Hence, by 2.5, X/F is ST3. The proof for T3
is similar. : ]

Theorem 2.8. If X is AT3 and F is strongly closed, then X/ F is ATj.

Proof. Suppose that X is AT3 and F is strongly closed. By 2.5, we
have to show that for all = # y in B/F, [z] ¢ K'(y). Suppose [¢] € K'(y) for
some z # y in B/F. It follows that there exists & € K(a) such that [z] D ¢(a)
and ¢(a) = y. If z # *, i.e. = ¢ F, then, by 1.3, a C [z] and consequently,
[2] € K(a), a contradiction since X is ATs. If & = %, then by 1.3, a U [F] is
proper, and consequently, a € F (since F' is strongly closed). It follows that
z = * = ¢(a) = y, a contradiction. Hence X/F is AT3. ]

Theorem 2.9. If X is ST3 and F is strongly closed, then X/F is STs.

Proof. Suppose that X is AT3 and F is strongly closed. By 2.5, we
need to show that for all ¢ # y in B/F, K'(z) N K'(y) = [#]. Suppose that
a € K'(z)NK'(y). It follows that there exists § € K(a) and 8 € K(b) such that
¢9(B) C @, q(§) € @, and ga = =z, gb = y. If a is improper, then we are done.
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Suppose a is proper. It follows that ¢(8) U ¢(é) is proper and so, by 1.2, S U 6 is
proper or both BU [F] and é U [F)] are proper. The first case can not occur since
X is ST3 and a # b. The second case can not occur, either, since F' is strongly
closed (we may assume a € F since 2 # y). This completes the proof. ]

Theorem 2.10. Suppose X is STs. If F is strongly closed and Vz € F,
K(z) = {[0], 2]}, then X/F is STs.

Proof. Let A= B/F and Y = (A,K'). If z # y in B/F, then, by 2.9,
K'(z) N K'(y) = [0]. Suppose that for any nonempty strongly closed subset F’
of A, z € A, and any proper filters 0,7 € K’(z). Suppose z ¢ Flandon~yis
proper. It follows that there exist § € K(a) and a € K (b) such that ¢(8) C «,
q(6) C a, and ga = 2 = qb.

Suppose z # *. If ¢ U~ is proper, then ¢(6) U ¢(e) is proper, and by 1.2,
either § U is proper or both § U[F] and aU[F) are proper, where ¢ : B — B/F
is the epi map that identifies F to *. The second case can not occur since Fis
strongly closed. Since X is ST3, by 2.3, there exists 3 € K(z = ¢ = b) such that
B C ané. It follows that ¢(8) € K'(z) and ¢(8) C g(@)Ng(é) C oN~y. Suppose
¢ ¢ F' and @ = *. It follows that a,b € F, and by assumption § = [b] and
a = [a]. Hence, ¢(o) = [+] = ¢(7). Let B8 = [a] and note that ¢(B) = [*] CaN7.

Suppose & € F’ and either o Uy is proper or both o U [F'] and yU [F].

Suppose also that @ # *. If ¢ U~ is proper, then ¢(6) U ¢(@) is proper,
and by 1.2 either § U a is proper or both § U [F] and a U [F] are proper. The
second case can not occur since F is strongly closed and = ¢ F. Since X is § T3,
by 2.3, there exists 3 € K () such that 8 C an é. Note that ¢(3) € K'(z) and
q(B) Cala)ng(é) Conry.

Suppose that o U [F’] and v U [F"] are proper. If follows that ¢(6) U [F”]
and ¢(a) U [F'] are proper. Since ¢~ 1F' is strongly closed subset of B (by
1.6(5)) and F is strongly closed, it follows that & U [¢~'F'] and é U [¢~1F]
are proper. Since X is T3, by 2.3(2), there exists d € ¢ 'F' and B € K(d)
such that either # C ané or both SN [¢"'F'] C ané and BU [¢7'F'] is
proper. Note that ¢(d) € F' and ¢(8) € K'(q(d)). Hence, ¢(8) C o Ny or
g(BN g7 F]) = ¢(B) N[F'] C q(a) N g(6) C o Ny and ¢(B) U [gq~ F' = F')) is
proper.

Suppose & € F' and x = *. It follows that a,b € F, and by assumption
§ = [b] and a = [a]. Hence, (o) = [*] = ¢(7). Let B = [o] and note that
¢(B) =[x] Cany.

Suppose that for any nonempty strongly closed subset F' of Y and any

proper filters o € K'(z) and v € K'(y) with 2,y € F'. It follows that there
exist 6§ € K(a) and @ € K(b) such that ¢(8) C o, ¢(§) C 7, and ga =z, gb=y.
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Suppose that ¢ U [F’] and 4 U [F'] are proper. Then ¢(6) U [F’] and
q(a) U [F'] are proper. Let @ # * # y. Since ¢~'F” is strongly closed subset of
B (by 1.6) and F is strongly closed, it follows that a U [¢™'F”] and § U [¢~1 F"]
are proper. Since X is §Ts, by 2.3, there exists d € ¢"'F’ and g € K(d) such
that either 8 C anédor fN[¢"'F') C and and B U [¢"'F'] is proper. It
follows that ¢(d) € F', ¢(B) € K'(¢(d)) and ¢(B) C q(a) Ng(6) C o Ny or
q(BN[g F'] = ¢(B)N[F] C q(@) N q(8) C o Ny and ¢(B) U [F'] is proper. Let
2 = * # y. Then a € F and, by assumption, a = [a]. Note that a U ¢~ [F"]
and 6 U [¢~1F"] are proper. Since X is ST5, by 2.3, there exists d € ¢~ 1F' and
B € K(d) such that 3N [¢"'F') C ané and B U [¢~'F'] is proper. Note that
q(d) € F', ¢(B) € K'(z) . It follows that ¢(8 N [¢~ F']) = ¢(B)N[F'] CoNy
and ¢(B) U [F'] is proper.

If ¢ # * = y, then interchange the role of z and y in the above.

Suppose 2 = * = y. Then a,b € F, and by assumption § = [b] and
a = [a].

Hence, ¢(0) = [*] = ¢(v). Let 8 = [a] and note that ¢(8) = [¥] Can1.

[

Remark 2.11. Let X = (B, K) be in FCO or LFCO.

Let I be finite set and for each i € I, ) # F; C B such that forall i # jin
I, F;nF; = (. Let R be the equivalence relation Ujer(F; x F;)U{(z,z): « € B}.
Note that the quotient map ¢ : X — X/R is the composition of the quotient
maps ¢ : X — X/F; =Y, :Y1 = Y1/F;, =Y,,...and ¢ : Yoy —
Yn-1/F. = X/R. Note that if I = {1}, a one-point set, then X/R = X/F, the
quotient space defined in the introduction. Then, we have:

(1) By induction, Theorem 2.7 holds for this quotient space X/R.

(2) By induction, Theorem 2.8 holds for this quotient space X /R provided
vhat each Fj is strongly closed, ¢ € I.

(3) By induction, Theorem 2.8 holds for this quotient space X /R provided
that each F; is strongly closed, i € I, and Vz € F;, K(z) = {[0], [z]}.

Lemma 2.12. Let X = (B, K) be an object in FCO or LFCO and
Y = (A, L) be a subspace of X.

If X is ATs, ST or T4, then Y is ATs, ST or T3, respectively.

Proof. It follows easily from 2.5. ]

Lemma 2.13. If A C B and « is a filter on B, then the following are
equivalent:

(1) There ezists a filter 3 on A such thata = {U C B:V C U for some V €
B},

(2) A€ a.



242 M. Baran -

Proof. If A€ a, then let 8 = {V : A D V}. For the converse note that
note that A€ 8 C {U C B:V C Ufor some V € f} = a. =

Lemma 2.14. Let X = (B,K) be in FCO or LFCO,Y = (A, L) be
a subspace of X. Suppose that if a € K(z), z € B, then A € a. Then if X is
STs, KT3, ST or LT, then'Y is T3, KT3, STy or LT3, respectively.

Proof. Suppose X is ST3 By 2.12, if a # b in A, then K(a)N K(b) =
{[0]}. It remains to show that conditions (2) and (3) of Theorem 2.3 hold. Let
F be any nonempty strongly closed subset F' of Y, a € A, and «,é be any
proper filters inL(a). Suppose a ¢ F. It follows that i(a),i(6) € K(a), where
i is the inclusion map Y C X. We show that F' is strongly closed subset of B.
By 1.6 (3), we need to show that Va € B if a ¢ F andf € K(a), then S U [F]
is improper. By assumption, A € 8 and by 2.13, there exists a filter o on A
such that 8 = i(o). Since Y is a subspace of X, o € L(a). Since F' is strongly
closed subset of Y, ¢ U [F] is improper. It follows that 8 U [F] is improper.
Note that i() U i(3) is proper and so, there exists a filter 3 € K(a) such that
B C i(a) Ni(6) since X is ST3. By assumption, A € B and by 2.13, there exists
a filter o on A such that 8 = (o). Since Y is a subspace of X, o € L(a) and
ocCand.

Suppose that a € F and either aU§ is proper or both a U[F] and § U [F]
are proper. It follows that either i(a) U i(6) is proper or both i(a) U [i(F) = F]
and i(6) U [F] are proper. Since X is ST, by 2.3, 3d € F and a filter § € K(d)
such that either 8 C i(an é) or BN [F] C i(and) and BU [F] is proper. By
assumption, A € B and by 2.13, there exists a filter o on A such that g = i(o).
Since Y is a subspace of X, 0 € L(a) and o CanNdoroN[F] C ané and
o U [F] is proper.

The condition (3) of 2.3 can be proved similarly.

Hence, Y is ST5.

The proof for ST4 follows easily from 2.5 and 2.13. ]

Let £ be a set based topological category and f : X — Y be a morphism
in £. Recall from [6], p. 225, that f is strongly closed iff the image of each
strongly closed subset of X is a strongly closed subset of Y.

Theorem 2.15. Let X; = (B, Li) be objects in FCO or LFCO and
B = [lier Bi-

(1) The cartesian product X = (B, L) is ATz or ST3 iff each X; is AT3
or 8T3s, respectively.

(2) If each X; is ST5 and the projections w; : B — B; are strongly closed,
then X = (B, L) is ST5.
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(3) If each X;,I is finite, is ST3 and the projections m; : B — B; are
strongly closed, then X = (B, L) is STj.

(4) If each X;, I is finite, is T4, then X = (B, L) is T3.

Proof. (1) Suppose X = (B, L) is ATz or $T3. Then it is easy to see
that each X; is isomorphic to some slice in X and by 2.14, all X; are ATj; or
STs, respectively.

Suppose each X; is AT3. We show that X = (B, L), where L is the
product structure on B, is AT3. Suppose there exist # y in B such that
[z] € L(y). It follows that there exists m € I such that @m # ym in Bp and
Tm([2]) = [¢m] € L (Tm(y) = Ym), a contradiction. Hence, for any z # y in B,
[z] & L(y), i.e., by 2.5, X is AT3. :

Suppose X; is §T3 and for any ¢ # y in B, a € L(z) N L(y). It follows
that there exists m € I such that &, # Ym in Bm and mp(a) € Lp(Tm(z) =
@m) N Loy(Tm(y) = Ym). Since Xp is T3, it follows that mm(a) = [0] and
consequently o = [(]. Hence, X is ST3.

Suppose that each X; is ST3. By above and 2.3, we need to show that
the conditions (2) and (3) of 2.3 hold.

Let F' be nonempty strongly closed subset of X , € B, and «,6 be
any proper filters in L(z). Let 0 = Umer(rlmma), v = Umer(m1mmd), and
F' = Uner(77 7m(F)) = [Ines ™mF. Note that o C a (since m'Tma C ),
¥ C b8, FCF'\Tpmo = Tna, Tny = Tpb, TnF = 7nF’, and consequently,
0,7 € L(z) and, by 1.6, F' is strongly closed subset of X. So, we may work
with o, v and F’. )

' Suppose that ¢ F’ and o U+ is proper. It follows that 7, (o), Tm(7Y) €

Ln(Tm(z) = 2), and Tp(0) U Tm(7) is proper. Since m,, F')is strongly closed
subset of B,, and X, is ST3, it follows that there exists a filter 8, € L. (2m)
such that B, C Tm(0) N Tm(y) = (o Ny). Let B = Umer(mn!Bm). Then,
it follows easily that Tm(8) D Bm € Lm(zm) (since TmfB D T3 TmfBm O Bm),
B € L(z) and B8 C o Ny (since for each m € I, ;'8 C o lrp(cNy) Cany).
Suppose that z € F' and either o U is proper or both ¢ U [F'] and 7y U [F"] are
proper. It follows that mm(0), Tm(7) € Ln(Tm(z) = zm) and Tm(0) U T ()
is proper or both 7, (o) U [T, F'] and 7y, (7) U [mm F'] are proper. Since mm F”
is strongly closed subset of Bp and X, is STs, it follows that there exists
d, € ™mF' and a filter B, € Lm(dy) such that B, C 7m(0) N mr(y) or
B O [T F') C T(0) N () and B U [y F'] is proper.

Let d = (dm) and B = Uper(n~Bp). Note that 7,,(8) € Lm(dm) and
consequently, 8 € L(d). If B, C ®m(0) N Tm(7), then, by the above argument,
B C o N~. Hence, 0 Ny € L(d) and cosequently, o € L(d) N L(z). Since o is
proper and condition (1) of 2.3 holds, we must have d = = and so, d € F'. If
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B N [T F'] C T () N T () and B U [7,, F'] is proper, then it follows easily
that 8N [F'] C o Ny and B U [F'] is proper. Since B U [F'] is proper and F” is
strongly closed subset of B, then d € F'.

Let F’ be nonempty strongly closed subset of X and o € L(z), v € L(y),
x,y € F' with ¢ U[F'] and v U [F'] proper. It follows that m,(0) € Lim(2m),
Tm(7) € Lm(Tm(y) = ym) and both mp(0) U [mp F'] and 7 (y) U [1n ] are
proper. Since m,, F” is strongly closed subset of By, and X,, is §T5, it follows
that there exists d,,, € T F' and a filter B, € Ly (dy) such that S, N [m, '] C
Tm (0) 7 (7) and B U [T F'] is proper. Let d = (dm) and f = Uner(7~!fm).
Note that m,,(8) € Lm(dm) and consequently, 8 € L(d) and SN [['] C o Ny
and BU[F'] is proper. Since SU[F'] is proper and F' is a strongly closed subset
of B, then d € F'.

(3) Suppose X is LT5. By (1), for all z # y in B, [z] ¢ L(y). Let F be
any nonempty strongly closed subset F' of B, # € B, and « be any proper filter
in L(z). Let ¥ = Umer(m;!mma) and F' = Uper(m;!'Tm F), where I is finite.
Note that 7,7 = mna, v € L(z), and 7 F' = 7 F. So, we may work with
v and F'. Since 7, F' is strongly closed subset of By, and X,, is LT3, by 2.5,
TmY = [®m] OF T F' € Tpy. I 7y = [2m)], then v = [2]. If 7, F' € 7y, then
F' €.

(4) The proof for T4 is similar to the proof of (3). ]

Let T3€ denote the class (full subcategory) of regular objects in a topo-
logical category £, where T3 is one of AT3 or ST3, respectively.

Theorem 2.16. Let £ = FCO or LFCO. The subcategories AT3E and
STsE are quotient-reflective in .

Proof. It is easy to see that each of these subcategories are full, isomor-
phism-closed, and closed under finer structures (i.e.,if X € 736, Y € £, UX =
UY,and id : Y — X is a £-morphism, then Y € T3€). By 2.12 and 2.15, each
of these subcategories are closed under formation of subspaces and products.

Hence, the subcategories AT3E and ST3E are quotient-reflective in £.
=
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