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We know that there is a relation between §"+29=1 (r) and A’ {6(z)} (Laplacian op-
erator iterated j times) (cf. [7]), where r = {/zi + ...z2.

In this paper we obtain relations between the distributions §(*)(P4), s (P, 6(’°)(P)
and 6( )(P) m terms of the ultrahyperbohc operator iterated (kK + 1 — 5) times, where
P= P(:c) =2+ .22 - zp.,,l - zp+q, p + g = n is the dimension of the space.

As an apllcatlon of this formulae we obtain a relation between the product 6" (Py) .
80 (Py) and 65+ (Py) (see formula (60)) under conditions: p and g odd and 0 < k+1—% <
% for n even.
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1. Introduction

Let m? + P be a quadratic form in n variables defined by
(1) m24+P=m?+ai+..+al-al,— .22,

where p + ¢ = n. The distributions (m? + P)} and (m? 4+ P)} are defined by

) 4Py = [ (mte P plaie

and

3) (m*+PX = [ (~(m?+ P) p(e)da,
m24P<0

where A is a complex number.
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Bresters in [3] showed the following formulas:

(4) " Resye_p1(m?+ P)} = %a<k>(m2 + P)
and 1
(5) Resy=—g—1(m? + P)} = Fs(k)(nﬂ + P).

On the other hand, let ¢, be a distribution of the variable s, and let
u(z) € C*°(R™) be such that the (n — 1) dimension manifold WXy Ty eeey Tp) =
0 has no critical points; ¢,(,) denotes the distribution defined on R™ by the
formula (called the Leray formula, [2], p.102):

+o0
(6) ~/R" ¢u(z)f(3')dfl?1d.’l:n = [oo Psds [‘(x)=a f(a")wu(.’b‘,d.'v),

where wy, is an (n — 1) dimensional form on u defined as follows:
(7) du A dw = dz1 Adzg A ...dTy,

the manifold u(x)=s having the orientation such that w(z,dz) > 0.
Using (6) (the Leray formula) for m? > 0 we have,

8 (60(m?+ P),¢) = (601, 7(1)) = (-1)*¥(), (8, - 189),

where
) W= [, ewmip(ada) () p189)
m2+4P=t

If

(10) P=P(x)=21+ ...+ Tp — Tp41 — -+ — Tptq»

we know that distribution

(11) §)(P) existif k< -’23— 1 ([1], p.249).
If, on the other hand,

(12) k25 -1,

<6§k)(P),<p> and <6£k)(P),<p> defined by ([1], p.250):

(13) (5§'°)(P),<P>=/o°° [(2gs)k{s"'2-'—p-%’—s)}] rP=ldr

8=7
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and
(19) (6P(P), ) =(—1)k/0°° [(%)k{rp-z.?%ﬁ}] ) s9-14s,

are regularizations of (6(F)( P), ).
On the other hand, from ([1], p.278), if

(15) M) (Py) = (=)*k! Resy=—1- P}
and

(16) 6B (P_) = (—)*k! Resy=—1-1 P2,
then i

(17) §W(Py) = 809 (P)

and .

(18) 6®(P-) = 87 (-P),

if n is odd and if n is even and k£ < § — 1.

For the case k > % — 1, the relations (17) and (18) are not valid, for
example, §(¥)(P,)— 6§k)(P) and §(*)(P_)— 6§k)(—P) are generalized functions
concentrated on the vertex of the P= 0 cone.

It is important to observe that for (4),(5),(8) and (9) to hold, m must
be different from zero. Indeed, formulae (4),(5),(8) and (9) may not hold it we
put in them u(z) = P(z), where P(z) is defined in (10). This is due to the fact
that the cone P(z) = 0 has a critical point (namely, the origin).

For going from 6§*)(m? 4+ P) to 6§(*)(P), taking m? = 0, we consider
the conditions (11) and (12) and the formulae (13),(14),(15),(16),(17) and (18),
therefore the following relations are valid:

(19) §8)(m? + P) = 6"(P) = §¥)(Py),

if m? = 0 for » odd as well as for even 7 and k < % — 1. While taking into
account (4),(5),(12),(13) and (14), the following relations are valid:

(20) §M(m? 4+ P) = 6M(P),
or
(21) (~1)k6W)(—m? — P) = 6P (P),

if m? = 0 for n even and k£ > % — 1, where 6£k)(P) g (—1)’“6§k)(—P) (a1,
p.251).
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2. Proportionality of k-th derivative of

Dirac delta in the hypercone

In this section we obtain relations between the distributions &(*)(Py),
s§R)(P-), égk)(P) and 6§k)(P), in terms of the ultrahyperbolic operator iterated
(k +1— %) times under the conditions k > 3 — 1, n even and k non-negative
integer.

To obtain our result, we need the following formulae:

2ok-1

- m2 v .
§E=D(m? + P)= Y (—v—!)—a(“ D(Py)

v=0

GLLAICR Yk
4= th(y - 2 4 k)

@)+ Y T+ L= H (o)) },

v>o—k

e 2\v
k-1 2 _ k-1 (m*)Y (k-1
§+-1(=m? - P) = (-1) > 75( )(P.)
v=0
(=1)ErE(=1)Hr
45tk (y - 2+ k)l

perpmt 3 N sy (L) E @) ),

v> 52—k
(23)
if pand g are even (see [4]);
%_k_l 2\v
§6-D(m? + Py= 3 (":)') §U+-1) (P,
v=0 :

(M2 [ (ktv1) (_1)95‘211-1r§—1(_1)u+k—1
- ’ uZ'Z-;:—k v {61 (P)+ 4v=3tk (v — 2 4+ k)

x [(5) - (UL~ E {8(2)} |,

%_k_l( Z)U
k=1 2 k= m v—
§*-D(-m? - P) = (-1)*! VZ=:O TJ(H Y(P.)

(=)F rEt(—yrh
4r=itk(y — 2 4 k)

e+ 3 L)

v2 53—k
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X [H(5) = (PU-L)~H+* {8()} },
if pand ¢ are odd (see [4]);

(26) 6W(Py) = 6)(P) = Bipo L*" 31 {8(2)}, if k2 5 — 1 (see [6]),

(27) 6M(P) = 6P (=P) = Dip L* 5+ {6(2)}, if k2 5 — 1 (see [6])
and

(28)  6(P) — 68 (P) = A p LF 51 {6(2)}, ifk > % — 1 (see [6]).

Here:

(29) Bipg = (~1*(-1)in? .

4k=3+(k — 2 4 1)

for p and ¢ both even,
2 L
4F=3+ (g — 2 4 1)

(30)  Bipg=(-D*-D)%Fx W) - $(3)
for p and ¢ both odd,
1

4kt (g - 2 1)

(31) Dipg = (-1)(-1)ir%

for p and ¢ both even,
1
4k=3H(k — 2 4 1)t

1

(32) Diypg = (1) ¥

q n
[¥(5) - 11’(5)]

for p and ¢ both odd,

(33) At = (DD

-24+1)
for p and ¢ both even,

1
ak=5H (k- 2 4 1)

1

(34)  Akpg = (-1)(=N¥(-1)F x?

p q
[(5) = ¥(3)]
for p and ¢ both odd;

. 02 o2 2 J
(35) L7 = {ax2 + i+ —— T 67} 5

a“”p+1 p+a
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also: ¥(z) = - f) and for integral and half-integral values of the argument,
¥ (z) is given by:
1

1
P(s) = —C+1+-2-+...+3—_—1‘, §=2,3,...,

1 1 1
P(s + 5) =-C-2n(2)+2(1 + 3+ et 2_3—_1)’ §=1,2,.u

where C is Euler’s constant.

Remark 1. We observe that in the firs terms of the above formulas
(22),(23),(24) and (25), 3 —k—120,0r equivalently, £ < % — 1, while in the
second ones, k > 7.

Now putting v = 0 in the first terms of the above formulas, (22),(23),(24)
and (25), and putting ! = v — % + k in the second ones, we have:

1. If pand g are even, then

k-1

(36) §E-D(m? + P) = s V(P + > (m) st (py)

v=1
m?)H+3s—k 2- —1)ErB(—1)H5!

and

(37) §¢:-1)(—m? - P)
——k—

=(_1)k—16(k—1)(P_)+(_1)k 1 Z (m ) 6(k+u l)(P )

v=1

3)+3-k n_ ~1)5rs(-1)*z!
+(- 1)’”;(‘[’;1 o {65’** D(_p)4 EET (L (—L)’{a(m)}}-

2. If p and ¢ are odd, then

F—k-1
§+=D(m? 4+ P) = 6*=D(Py) + Z (m) slk+v=1(py)

v=1
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1 n
(m)*+EF grpon o (CDF A=
(38) + Z; U+ k)|{61 (P)+ 4

x [$(5) - v(LY {6(2)} |
and

2—k-1
(k l)(_m ——P)—( 1)L 16(k 1)(P )++( 1)L -1 Z (m) 6(L+u—~1)(P )

v=1

2\l+ 2~k ﬂ. -1 +5-1
(39) +(_1)k—12((77n:'2_;___k)!'{6§1+2 1)( P)+( 1) 7411'( 1)

>0
x [9(%) - (I-1) {6=)} }.

Putting m? = 0 in (36), (37), (38), (39)-and taking into account formulas
(19), (20) and (21), we obtain the following formulas:

1SR (=1)1 e
(40) 6{(P) = 60-(py) + 8P + GEEEIT I (o)

and
(41) s{+(p)

(=Dt (=1)ad (-1

T (k-2 L% {5(2)},
Y

= 6,V (P) + 64 (-P) +

if p and ¢ are even for k£ > 3; and

(42) 6Py = §*V(py) + 6*-D(P)
(-0 1(=)Fad  p Bl g
+ 4k——(k n)| [¢('2')_¢(§)]LL 2{6(3“)}
and ;
(43) 1Py = 6 V(P-) + 6( V(- P)
g+1
+(’””” 0D - w5},
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if pand ¢ are odd for k > %

From (40) and considering the formula

(43 )*6®(Py) — 6B (P-) = L_i,;(k_ﬂ H),Lk-%“{a(m)} ([1], p-279),
Y

we obtain the following formulas:

58 (“DEDHEDERE a0
(45) P = oGyt @)
and -
(46) WPy = (CHEITY _pagia (5009},

4F=3H (k- 2 4 1)
if pand ¢ are both even and k> 5 — 1.
Similarly, from (42) and considering the formula
(47) §®(P_) = (—)*6M(Py) ([1], p-279),

we obtain the following formulas:

gt1 2_.1

k-1
) s0(ry) = G ) - I (o)
1)
and
BO(P) = (1)) = =TT TE By Bkt (5
-/ +/ = k—-—+1(k 721+1)! 2 ) {(:L)},
(49)

if p and ¢ are both odd and k> %
On the other hand, from (43) and using (27) and (32), we have,

(50) 65’°’<P) = 6M(P_) + (=18 (P)

(-)*+ai -2
+4L__+1(k s H)!-[wg)—wg)]f:k 1 {6(2))

and gj_ .
(=1)7 72~
(51) 4k=3+(k - 2 4+ 1)!

() - (I (o))
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= §W(P_) = (~1)ks(P).
Therefore, from (50) and (51) and using (49), we have

s$(P) = 26M)(P-)

_ g+l n_4
= (-2) k_(2+11) 2 T2
FFF(E— By 1)l

(52) W) - v E (5(2)},

if p and ¢ are both odd.
From (28) and using (34) and (52), we have

(—D)F(-1)*F 81
4k=3 (g — 2 4+ 1)

(53)8(P) = 619(P) + [W(3) - pIEFE {8(2)}
oy (D)F A

= 2)4'=-%+1(k -2 +1)
(—F =) F i
4k=3+ (k- 2 4+ 1)!

T(8) - w3+ {6(2))

+ [W(3) - G {6(2)},

if p and ¢ both are odd.
On the other hand, from (26) and (45) and using (29), we have,

(=Dk(=1)Fr 3 (-1)*
4k=3 (k- 2 4 1)!

) (=D (=1)EFxz(=1)1 , &
= ( )4(k-%)+£(k _)__ :1;4_(1)2 Lk 2+l {6(:1:)}’

if p and ¢ are both even.

§F(P) = 6W(Py) - LF=5+1 {5(x)}

(54)

Similarly, from (27) and (31), and using (46), we have,

(=1ir3(=1)*"
4F=3H(k - 2 + 1)

sE(P) = (—1)k6W(P_) - (-1)F A Ak {6(w)}]

(~)H(=DErF (-1
4k—§+l(k 3 % & 1)!

_2(=DF(=DErE(-1)k?

k=241
- 4k—%+l(k _ 121_ + 1)| Lz {6((12)} *
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_ (DR EaE (-1t
4k=3+1(k — 2 4 1)!

(55)  x LK+ {6(x)} = L5+ {6()},

if p and ¢ are both even.

Formulas (45), (46), (48), (49), (50), (52), (53), (54) and (55) represent
the proportionality between §(*)(Py), §(*)(P_), 6$k)(P) and 6£k)(P), and the
ultrahyperbolic operator iterated (k+1-%) times.

3. Application of basic formulas (48) and (49)

We know from ([5]) that the following formula is valid:

(56) 6D (Py) - 647D (Py) = CupgnLF*'756(2),
under the following conditions:
n_n
< — <=
(57) a)0<Lk+1 5 <3
and
(58) b) p and ¢ are both odd,

where L7 is defined by (35) and

1(=1)F a8 (=DF1 (k=1 - 1)I(=1)-
R T(k+1)

(59) Cikgn =

From (56) and using (48), we obtain the following formula:

5(k)(P+)-6(l)(P+) = Cl+l,k+1.q.nLk+l+l+1—%5(“’)

(G N ol ) W (1101 o Y I S e U o Bl )
AR (k1= 3+ VT +142)" (—1) B -1 (1) [y(R) — p(B)]

L
2

<1 skl 1
2(k+1+ 1)V [9(E) —v(3)]

(60) xRy ) = s+ py),
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under the conditions that p and ¢ are both odd and 0 < k+1—-5 < 5.

Similarly, from (60) and using formula (47), we obtain

60 (P_).80(P_) = (~1) 8Py ).6O(Py)

; 1 k! 1
= (=)™ [‘E(k F 1+ 1)U [9(B) - ¢(3)]

] .(—1)k+15(k+1+1)(P+)

1R 1
2(k+ 1+ DV [$(5) — #(3)]

under the conditions that p and ¢ are bothodd and 0 < k+1+4+2—- % < 3.

D (P,

(61) -
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