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1. Introduction

In [1, 2, 3], Atanassov introduced the fundamental concept of intuitionis-
tic fuzzy set which is a generalization of the concept of fuzzy sct given by Zadeh
[8]. Later, the concepts of intuitionistic fuzzy topological spacc. and some other
concepts were given by Coker [4]. Giirgay, Eg and Coker [5] introduced the no-
tion of semicontinuity in intuitionistic fuzzy topological spaces. In this paper,
we introduce and investigate fuzzy irresolute and fuzzy weakly semicontinuous
functions which have been presented in [6] in intuitionistic fuzzy topological
spaces.

First we present the fundamental definitions given by Atanassov:

Definition 1.1. ([3]) Let X be a nonempty fixed set. An intuitionistic
fuzzy set (IFS, for short) A is an object having the form

A= {< z,pa(z),74(z) >: z € X},

where the functions g4 : X — I and y4 — I denote the degree of membership
(namely, p4(z)) and the degree of nonmembership (namely, va(2)) of each
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element z € X to the set A, respectively, and 0 < pa(2) + va(2) < 1 for each
zeX.

Obviously, each fuzzy set A on a nonempty set X is an II'S having the
form

A={<z,pa(x), 1 —pa(e)> 2 € X}.

For the sake of simplicity, we use the symbol A =< 2, pa,74 > lor the
IFS A = {< a,pa(x),74(x) >: 2 € X}.

Definition 1.2. ([3]) Let X be a nonempty set, and the IF'S’s A and
B be in the forms A =< 2,p4,74 >, B =< a,up,y8 >, and let {A; : i € J} be
an arbitrary family of IFS’s in X. Then we have:

(a) ACBiffze X [pa(z) < pp(2) and ya(z) 2 vB(2));

(b),_q:Biﬁ’AganngA;

(c) A=< z,74,p4 >;

(d) NA; =< &, Apea;, Vy4;;

(e) UA; =< a,Vpa;, Av4; >3

(f) 0. =< 2,0,1> and 1. =< 2,1,0>,

Proposition 1.8. ([4]) Let A, B,C and A;(i € J) be IFS’s in X. Then
the following are satisfied:

(a) ACB=ANB=Aand AUB = B;

(b)) ACBand BCC = ACC(C;

(c) BN (UA;) =U(BN A;);

(d) BU(NnA;) =N(BUA;);

(e) A; C B foralli € J = UA; C B;

(f) B C A; for alli€ J = B C Aj;

(9) UA; = NA;;

(h) NA; = UAi;

(i) ACB& BCA;

(1) A= A.

Now we define the image and preimage of IFS’s. Let X,Y be two
nonempty sets and f: X — Y be a function.

Definition 1.4. ([4]) (a) If B =< y,uB,yB > is an IFS in Y, then the
preimage of B under Y, denoted by f~!(B), is the IFS in X defined by

f7YB) =<z, fYuB), f ' (1B) > .

(b) If A =< x,p14,74 > is an II'S in X, then the image of A under f,
denoted by f(A), is the IF'S in Y defined by

f(A) =< y)f(/"'A)?f(‘YA) >,
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where f(y4) =1- f(1—74).
Now we list the properties of images and preimages, some of which we
shall frequently use in the following sections:

Corollary 1.5. ([4]) Let A, A;’s (i € J) be IFS's in X, B,B;’s (j € I\)
be IFS’s inY and f: X — Y a function. Then we have:

((l) A1 - A2 = f(Al) - f(A2),'

(b) By C By = [~Y(B1) C f~Y(B2);

(c) AC f~Yf(A)); [If [ is injective, then A = f~1(f(A))];

(d) f~Y(f(B)) C B; [If f is surjective, then f~1(f(B)) = BJ;

(e) F~1(NB;) = Nf~1(Bj);

(f) f71(UB;) = Uf~(B));

(9) f(UA;) = Uf(A:);

(h) F(NA;) CNf(A;); [If [ is injective, then f(NA;) = Nf(A;)];

(i) f71(0~) = On;

(J) f—l(]"“) = 1~;

(k) If [ is surjective, then f(1.) = 1~; -

() £(0) = 02; 7

(m) If f is surjective, then f(A) C f(A); [If furthermore f is injective,
then f(A) = f(A)];

(n) $1(B) = FI(B).

Definition 1.6. ([4]) An intuitionistic fuzzy topology (IFT, for short)
on a nonempty set X is a family 7 of IFS’s in X containing O~, 1~ and closed
under finite infima and arbitrary suprema. In this case the pair (X, 7) is called
an intuitionistic fuzzy topological space (IFTS, for short) and any II'S in 7 is
known as an intuitionistic fuzzy open set (IFOS, for short) in X.

Definition 1.7. ([4]) The complement A of an IFTS A in an IFTS
(X,7) is called an intuitionistic fuzzy closed set (IFCS, for short) in X.

Definition 1.8. ([4]) Let (X,7) be an IFTS and A =< =, 4,74 > be
an IFS in X. Then the fuzzy interior and fuzzy closure of A are defined by

cl(A)=nN{K : K is an IFCS in X and A C K}

and

int(A) =U{G : G is an IFOS in X and G C A}.
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Proposition 1.9. ([4]) For any IFS A in (X, T) we have:
(a) cl(A) = int(A);
(b) int(A) = cl(A).

Definition 1.10. ([5]) Let A be an IFS in an IFTS (X, 7). A is called:

(a) an intuitionistic fuzzy semi-open set (IF'SOS, for short) of X if there
exists B € 7 such that B C A C cl(B);

(b) an intuitionistic fuzzy semi-closed set (IFSCS, for short) of X if there
exists B € 7 such that int(B) C A C B.

Theorem 1.11. ([5]) The following are equivalent:

(a) A is an intuitionistic fuzzy semi-open set;

(b) B is an intuitionistic fuzzy semi-closed set;

(c) int(cl(A)) C A;

(d) A C cl(int(A)).

2. Intuitionistic fuzzy semi-interior and
intuitionistic fuzzy semi-closure

Here we generalize the concepts of fuzzy semi-interior and fuzzy semi-
closure of the fuzzy sets given by Yalvag [7] to the intuitionistic case:

Definition 2.1. Let A be an IFS and define the following sets:

sclA=n{B:AC B,Bis an IFSCS in X},
sintA = U{B : B C A, is an IF'SOS in X}.

We call sclA the intuitionistic fuzzy semi-closure of A and sintA the
intuitionistic fuzzy semi-interior of A.

It can be shown that sintA is the greatest intuitionistic fuzzy semi-open
set which is contained in A and sclA is the lowest intuitionistic fuzzy semi-closed
set which contains A, and we have:

(a) A is IFSOS & A = sintA;

(b) A is IFSCS & A = sclA.

Proposition 2.2. For any IFS A in (X, T) we have:
(a) A C sclA C clA;
(b) intA C sintA C A.
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Proof. (a) Let A =< 2,p4,74 > and suppose that {< @, up,vr, >:
i € I} is the family of IFSCS’s containing A. Furthermore, suppose that {<
Ty pGys VG, >k € K C I} is the family of IFCS’s containing A. By Definition
1.10,

i < pg, and yE > g, foreach k€ K C I,
hence we have App, < Apg, and Vyr, > Vyg,. Then we see that
sclA =n{< 2, pup, 7 >t € I} CcdlA=n{< 2,uq,,7G, >: k € K}.

The inclusion A C sclA can be seen easily from Definition 2.1.
(b) Use a similar technique as above. ]

Proposition 2.3. For any IFS A in (X,T) we have:
(a) sintA = scl4,
(b) sclA = sintA.

Proof. (a) Let A =< @,p4,74 > and suppose that the family of
IFSOS’s contained in A are indexed by the family {< z,uq;,7q;, >: 1 € J}.
Then we see that sintA =< &, Vug;, Avg; > and hence A=<a, NG, Vig; >.
Since A =< 2,7a,1ta > and pg; < pa, Y6, = 74 for each i € J, we obtain
that {< z,7g; g, >: i@ € J} is the family of IFSCS’s containing A4, i.e.
scld =< 2, NG, Vg, >. Hence we have scld = intA.

(b) This is analog (a). =

Definition 2.4. ([4,5]) Let f: (X,7) — (Y, ¢) be a function. Then,

(a) f is said to be fuzzy continuous, if f~1(B)o is an IFOS in X, for each
BIFOSinY.

(b) f is called a fuzzy semicontinuous function, if f~!(B) is an intuition-
istic fuzzy semiopen set in X, for each B € ¢.

(c) f is called fuzzy almost continuous function, if f~'(B) € 7 for each
intuitionistic fuzzy regular open set B of Y.

Theorem 2.5. The following are equivalent each to other:
(a) f:(X,7) — (Y,9) is fuzzy semicontinuous;

(b) f~Y(B) is IFSCS, for each IFCS B inY;

(c) intel f~1(A) C f~(clA), for each IFS B inY;

(d) f(intcl(B)) C clf(B), for each IFS B inY .

Proof. Straightforward. ]
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Theorem 2.6. Let f : X — Y. [ is IF semi-continuous, iff
f(scl(A)) C el f(A) for every IFS A in X.

Proof. Let A be an intuitionistic fuzzy set of X. Since ¢lf(A) is an
intuitionistic fuzzy closed set, f~1(clf(A)) is an intuitionistic fuzzy semi-closed
set in X. Clearly,

el f(A)) = sel f~1 (el f(A)).

From Corollary 1.5, step by step we get
AC fTHf(A)) = sclA C sel f7(f(A)) C sel f~ (el f(A)) = f7H(el f(A))

= sclA C f~Y(clf(A)) = f(scl(A)) C clf(A).

Conversely, let A be an intuitionistic fuzzy closed set in Y. From the
hypothesis, we have

f(self~1(A)) C clA = A.
Then sclf~1(A) C f~1(f(self~1(A))) € f~1(A). So f~YA) = sclf~1(A).

Hence f is an intuitionistic fuzzy semi-continuous function. ]

Definition 2.7. A function f : (X,7) — (Y, ¢) is called a fuzzy
irresolute function, if f~!(A) is intuitionistic fuzzy semiopen in X for each
intuitionistic fuzzy semiopen set A in Y.

It is evident that every intuitionistic fuzzy irresolute function is intuition-
istic fuzzy semicontinuous. However we can see that the converse is not true by
the following example.

Example 2.8. Let X = {a,b,c},Y ={1,2,3} and

a b= (e (Ll ey e b e
“(44 9(44 4)6%4“22y5M5hy3»
123 123 123 123

<y,(f1 ?, 3 (32 3;»

Then the family 7 = {0~,1.,G1,G2} of IFS’s in X is an IFT on X and the
family ¢ = {0~,1~,U1,U2} of IFS’s in Y is an IFT on Y. If we define the
function f : X — Y as f(a) = 2, f(b) = 3 and f(c) = 1, then f is a fuzzy
semi-continuous function, but is not a fuzzy irlesolute function. Smce Us is an
IFSOS which is not an IFOS, then f~1(Us) = (2, (=

an IFSOS in X.

35 4)(3 5,r)) is not
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Theorem 2.9. Let f: X — Y. Then the following are equivalent:

(a) f is fuzzy irresolute;

(b) f~Y(B) is IFSCS in X, for each IFSCS B in Y ;

(c) f(scl(B)) C sclf(B), for each IFS B inY;

(d) sclf~Y(B) C f~Y(sclB), for each IFS B inY .

Proof. For the implication (¢) < (c) one can make use of Theorem
1.11. The implications (b) © (¢), (¢) & (d) are similar to the fuzzy case. u

Theorem 2.10. [+ X — Y is an intuitionistic fuzzy irresolule
function iff for each intuitionistic fuzzy set B in Y,

f~Y(sintB) C sintf~!(B).

Proof. The proof is obvious. ]

Theorem 2.11. Let f: X — Y be one-to-one and onto;f is a fuzzy
irresolute function iff for every IFS A in X, sintf(A) C f(sintA).

Proof. It can be easily proved. ]

Definition 2.12. A function f : (X,7) — (Y, ¢) is called a fuzzy
weakly semicontinuous function if f~1(A) C sintf~1(sclA) for each intuitionis-
tic Tuzzy open set A in Y.

Remark 2.13. Clearly, a fuzzy semicontinuous function is fuzzy weakly
semicontinuous, but the converse need not be true as shown in the following
example.

Example 2.14. Let X = {a,b},Y = {1,2} and

1 2 1 2
= (2, (%) (52N Ga = (2,(%, %), (5 2 Uh = (3, (G 2), (5 2

Consider the IFT’s 7 = {0~,1~,G1,G2} and ¢ = {00, 10,0} on X and Y,
respectively. We define the function f: X — Y as f(a) . 2 and f(b) = 1.

Then f is not fuzzy semicontinuous, since f~}(U;) = (x, ( ) ( )) is not
an intuitionistic fuzzy semiopen set of X. It can be shown tha.t f lS weakly
semicontinuous as follows:

IFSC(Y) = {B: B = (0 (5o o) (g ) en, 0 B, B € 2, 5]
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Hence,

1 2, 1 2

a
232055 2

sellUy = (y, ( )) = Ur, f7H(selly) = (‘”’(.2’%)’(%’% )

Furthermore, since
. a b a b
IFSO(X) = {A: A=z, (—sy=—)l=> —)), a1,z € [2,.3] B2,z € [-3,.4]}
ay ay” P P2

and
a a b

e b
sintf~1(sellUy) = (@, ( ok —2‘)»(—3’ _3»’
we have f~1(Uy) C sintf~'(sclUy). Thus [ is fuzzy weakly semicontinuous.

Theorem 2.15. If f : (X,7) — (Y, ¢) is fuzzy almost conlinuous
Junction, then f is fuzzy weakly semicontinuous function.

Proof. Let B be an intuitionistic fuzzy open set in Y. Using Proposition
2.3 and Definition 2.12, we have

F~Y(B) C intf~(intelB) C sintf~' (intclB) C sint(intcl f~1(sclB)).
Since sclB is an intuitionistic fuzzy semiclosed set, by Theorem 1.11 we have
sint(intel f~}(sclB)) C sint(f~'(sclB)).

Hence we obtain f~1(B) C sintf~!(sclB).

The converse of Proposition 2.15. may not be true.

Example 2.16. Refer to Example 2.14. Then f is fuzzy weakly
semicontinuous, but not fuzzy almost continuous since U = intelUy  but
f~Y(U;) is not intuitionistic fuzzy open in X.

Theorem 2.17. The following are equivalent:

(a) f is fuzzy weakly semicontinuous function,
(b) scl(f~(sintB)) C f~1(B) for each intuitionistic fuzzy closed B of

(c) f~1(intB) C sint(f~'(sclB)) for each intuitionistic fuzzy set B of

(d) scl(f~Y(sintB)) C f~Y(cIB) for each intuitionistic fuzzy set B of Y.
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Proof. (a)= (b). Let B be an intuitionistic fuzzy closed set of Y.
Then B € ¢ from (a), we have f~1(B) C sint(f~!(sclB). By Proposition 2.3,
we obtain

F-U(B) = f~Y(B) C sint(f~1(sintB) = scl(f~(sintB)).

Thus, f~1(B) 2 sclf~(sintB).
(b) = (@) It is similiar to the previous proof. (a) ¢ (¢),(b) ¢ (d) is
obvious.
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