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In this paper one-dimensional parabolic problems that involve time derivative in the
boundary conditions are solved using the method of lines (MOL). Factors influencing the choice
of the ODEs solvers that results from the spatial discretization are investigated on the model
advection - diffusion equation. Convergence of MOL schemes is proved. Numerical experiments
confirm and complement the theoretical results.
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1. Introduction

The method of lines, MOL, is a well-known approach in the numerical
solution of time-dependent partial differential equations (PDIs) with classical
boundary conditions, i.e. Dirichlet, Neumann and Robbin conditions. In this
approach the solution process is thought of as consisting of two parts, viz. the
space discretization and the time discretization. By discretizing the space vari-
able by finite differences, finite elements , spectral techniques, etc., the PDE
is approximated by a system of ordinary differential equations (ODEs). Such
a semidiscretization is often an intermediate step in the derivation of a fully
discrete scheme, but in the MOL approach the ODEs are integrated directly
with a standard code for the task.

In this article we analyse the MOL for problems of the following type:

(1.1) iz, t) = f(a,t,u(z,t),u'(z,t),u"(2,t)), 0<2<1,0<t < T < o0,

(1.2) e0t(0,t) = go(t, w(0,1),4'(0,)), 0 <t < T,
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(1.3) eru(1,t) = g1(t, u(1,t),u'(1,t), 0 <t < T,

(1.4) ' w(z,0)=¢(x),0<2<1,

where gg,¢; are nonnegative constants; the time and space derivatives are de-
noted, respectively, by a dot and a prime. Our basic assumptions are:

(1.5) —-—;)J, >D>0,
090 d91
. _ > — <
(1 6) ou >Dg>0, o0 D; <0

Therefore, the problem (1.2)-(1.4) is parabolic. One observes that when ¢ > 0
or £; > 0 (or both), the boundary conditions are non-standard since (1.2), (1.3)
involve derivatives with respect to the time. Such conditions are called dynamic
(nonstationary) boundary conditions (D.B.Cs.), [2, 6]. Problems of type (1.1)-
(1.4) are used to describe mathematical models in the theory of heat conduction,
chemical reaction theory and colloid chemistry; see the survey and references in

(2]-

We also refer to [2], where a phenomenologial deduction of semilinear
problems of type (1.1)-(1.4) is given. There a diffusion process is considered in
the solid © = (0, 1) placed in a fluid or a gas. The transport equation is

(1.7) i(z,t) — (p(z,t)u'(z, 1)) = f(u(z,t)) in Qx(0,T).
Here
(1.8v) p(x,t) > po>0

represents the diffusion coefficient (or thermal conductivity), the scalar field pu’
is the heat flux, f(u(z,t)) stands for some source term and €o > 0 or £ (or both)
mean(s), that the left boundary @ = 0 (respectively right 2 = 1) (or both) of
the body Q are permeable to heat and we obtain the DBCs:

(1.9) e0i(0,t) — p(0,¢)'(0,t) = go(u(0,1)) , 0<t< T,
(1.10) eri(1,2) + p(1, 1)’ (1,) = ga(u(L,2)) , 0<t < T,

(1.11) u(z,0)=¢(z),0<2< 1.
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When ¢ = 0 or &5 = 0 (or both), the corresponding boundary is
impervious to heat and we get the classical Robbin BCs.

The problem (1.7) - (1.10) with f = 0,90 = 0 and u(1,t) = 0 instead of
(1.10), is considered by Samarskii [7, p.396]. There, a fully discrete scheme with
weight 7, 0 < 4 < 1, which has 0(r™~ + h?) local truncation error, where r and
h are the time and space steps discretizations, respectively, and

my,=2if y=0.5, m,=1if v #0.5,

is constructed. Realization and convergence of this scheme are also studied.

In Section 2 the phenomenon stiffness which is invariable property associ-
ated with the process of solving the ODEs is discussed. Also, a result of Verwer
and Sanz-Serna for the convergence of MOL is prepared for applications. In this
paper several semidiscrete schemes for solving problems (1.1)-(1.4), (1.7)-(1.10)
are studied. First, in Section 3 prototypes of these schemes are analysed for
the advection-diffusion equation. This analysis throws light on the choice of
ODE solvers for the numerical solution of the nonlinear problems (1.1)-(1.4),
(1.7)-(1.10). Then, in Section 4, this study is generalized to the nonlinear PDEs
in question. Also, equation (1.7) is approximated by finite differences with
O(h?) local trunctation error as h — 0 at the interior mesh points h,...,nh,
and equations (1.8),(1.9) - with O(h) local truncation error at the points 0 and
1 = (n+1)h, respectively. Realistic numerical examples which confirm and com-
plement the theoretical conclusions in previous sections are presented in Section

5.

2. Preliminaries

For integer n we denote h = 1/(n + 1) and approximate u(kh,t) by
yr(t) for k = 0,1,...,n + 1. The approximations (see Section 3) to problems
(1.1)-(1.4),(1.7)-(1.11) are ODEs of the form:

(2'1) y(t) = F(tv :‘/(t)) ’ y(O) = (P(O)’

y(t) = [0(t), - -, Unr1 (D] ©(0) = (9(0),. .., @(kh), ..., (1)

The first goal of the present paper is to analyse numerical solution of the
ODEs (2.1). The system (2.1) is said to be stiff, if the eigenvalues A, ..., An41
of the Jacobian matrix J satisfy the relation

m’?x[lRe()\k)H > mgn[IRe(/\k)l].

The ratio
_ maxg[Re|A|]

) = o [ Relell
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is called stiffness ratio of the system [1, 4, 8].

The second goal is the treatment of the semidiscrete approximations con-
vergence for equations (1.1)-(1.3) and (1.7)-(1.9) in the class of ”bounded” non-
linearities. We apply the following results of Verwer and Sanz-Serna [11]. The
vector up(t) = (u(O,t),...,u(kh,t),...,u(l,t))T satisfies (2.1) with a residual
7(t) that is the truncation error of the spatial difference approximations

r(t) = F(t,un(t)) — wn(t).

A discretization is said to be consistent, if there is a norm for which ||»(¢)|| — 0
uniformly in ¢ as h — 0. The error of the semidiscrete approximation is n(t) =
y(t) — up(t). Using the mean value theorem for vector functions, it is found that

7 = p(t)n + (1),

where

Lo
u(t) = /0 —a;F(t,'uh + On)d6.

The convergence follows from an inequality that bounds [|[7]| in terms of a bound
on ||7|| and a factor depending on a bound for the logarithmic norm correspond-
ing to the chosen norm |[.||.

Remark . The logarithmic norm of the matrix A is the number
nlA] = limy o+ “ﬂ,'i‘-’—‘ﬂ, where F is the identity matrix.

]
In Lo the norm of a vector v = (vy,v2,.- .,Vn) and the corresponding

norm of a matrix A = (@ij),i,j=1,2,..,.n are given by
n
(22) lolleo = max lul , [l 4lleo = max J}_:l Jaij| -
The L, norms are defined by

n n
(2:3) lolla =D 1ol 5 Al = max Elaal-
1=

i=1

The Lo, and Ly logarithmic norms of a matrix corresponding to (2.2)
and (2.3) are given by

n
HoolA] = max (aii + Z aijl) s
ol J=1,j#i
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n
mlA] = max (aj; + Z aijl) -
- i=1,i#]

Let Th(t) = un(t) +0n(t),0 <0 <1, and let piypqr be a constant such
that

d
Bz = ma:vw[z)—g-/-F(t,q)] 1 € Ty(t) for allt €[0,T).
If ||7(0)]| = 0, it follows that
In(ll < C(t, pmaz)maz||r(r)|| for 0 <t < T,

where C(t, tmaz) = (€2P(Emaxt) — 1)/pmaz-The conclusion is the following the-
orem, [11].

Theorem 1. Suppose that the discretization is consistent and that pymay
exists independent of the mesh spacing. Then ||y(t) — un(t)|| — 0 as h — 0, i.e.,
the MOL converges. If the truncation error is O(h?) uniformly for 0 <t < T,
the error ||y(t) — un(t)|| is also O(hP).

3. Linear problem
The advection-diffusion equation
(3.1) i(z,t) — Du"(,t) + vu'(2,t) = 0

has often been used for the study of numerical methods for the solution of PDEs.
We shall solve (3.1) with DBCs,

(3.2) e0w(0,1) — Du'(0,1) = —goo(t)u(0,t) + gor(t),

(3.3) eri(1,t) + Du'(1,t) = —gro(t)u(1,t) + gn(2).

In this section, we assume that D > 0, » > 0 and additionally - ggo(t) >
0, g10(t) > 0. We shall approximate the partial derivatives with respect to
in (3.1) by central derivatives

1 — 2Uk - - Yk—
gu = DYEE! Yk + Yk—1 | Ykt1 — Yk

52 5 , k=1,...,n.

(3.4)
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3.1. O(h) approximation of the BCs

Consider one-sided difference approximations to the D.B.Cs:

. Y1 — 1
(3.5) coljo = Di}-—h—J9 — goo(t)¥o + go1(2),

. 1 —1
(3.6) E1Un41 = —DMF—J'L — g10()Ynt1 + g11(2).

We group the approximations as a vector y = (yo,...,yn+1)T and write the
equations (3.4)-(3.6) as a linear, constant coefficient system of the form (2.1),

namely:
(3.7) y=F(t,y) = Jy + s(),

where F/dy = J is a tridiagonal matrix with

D 1 D
Joo = —— — —goo(t) , Jon = o’

th o
D v D D v
Tik-1= 33 + 55 > Tk = =257 Jrkt1 = 33 = gp k=1,...,n
D 1
n = T 7 = o t
Jntin = 7 Jnt1,n41 oh €1910( )

and the inhomogeneous term is:
1 1
S(t) = (—gm(t), 0,...,0, :—gu(t)).
€o €1

The Jacobian of a system of ODEs plays a key role in establishing con-
vergence and in selecting an appropriate integrator. In our case the mesh, or
cell, and the Reynolds number R = vh/D are important. If R < 2, then
Ji—1,k Jkk—1 > 0 and J is quasi-symmetric. Further,

Joo + |Jo1| = —goo(t) < 0,

Jn+1,n + |J11+1,n+1| = _glo(t) < O’
Tie + [Tk ge—1| + [Tk p1] = 0.

These observations imply that peo[J] = 0 and, as a consequence from
Theorem 1, the convergence follows. A standard result about the logarithmic
norm ([1],p. 31) is: if X is any eigenvalue of the matrix A, then Re(\) < poolA]
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Since J is quasi-symmetric, then all the eigenvalues are real. Therfore, all
eigenvalues of J are non-positive. Also, a well-known result about symmetric
and quasi-symmetric matrix A is: if Ag < ... < A,41 are the eigenvalues of
A, then for all £, Ao < Agr < Apy1. A typical entry on the diagonal of J is
—2Dh~2, which tells us that some of the eigenvalues have negative real part of
magnitude O(h~2); hence the system (2.7) is stiff for solutions that are easy to
approximate. In view of the expression for Jog (or Jy41,n+1), this system is much
stiffer when ¢q (respectively, 1) is small in comparison with h, i.e. ¢ < h.

When the advection dominates (2 > 2) and all or some of the cigenvalues
are complex with large imaginary parts, then equation (3.1) assumes a hyper-
bolic character. In this case the system (2.1) is oscillatory and the methods
efficient for stiff ODEs are not suitable for integration.

Using MATLAB, the eigenvalues of the Jacobian for small and large n
are computed. The numerical values of the eigenvalues in dependence on n and
€0 = €1 € (0,1] are displayed in Tables 1 and 2. All the eigenvalues are complex
with negative real parts. Note that Reynold’s number is R = 2 + # and in all
the experiments D = 1 and ¥ = 2n — 1 are assumed.

N | m = min|Re\;| | M = max|Re);] s=4
100 | 9.949947 % 101 | 3.295001 + 107 | 3.11159 % 107
500 | 9.989949 % 10~T | 9.633134 % 105 | 0.96427 * 10°

Table 1. =6 =1

N | m = min|Re);| | M = max|Re);| s=12
100 | 6.648009 * 10! 3.269566 * 101 | 4.91811 % 10%
500 | 9.089931 10! 9.635773 % 10° | 1.06005 * 107

Table 2. ¢ =¢; =102

If o = €1 — 0 in (3.2) and (3.3), then Robin’s boundary conditions are
obtained. Thercfore, Tables 1 and 2 show that the parabolic problems with
DBCs are more stiff in comparison with those with classical BCs. Thus, many
of the popular codes for stiff ODEs may be used [4], [5], [9], [10].
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3.2. O(h?) approximations of the BCs

An O(h?)-approximation of the left boundary condition can be obtained
introducing a fictious mesh unknown y_;:

) - Y-
€oYo = pf A=t gooYo + go1
20
which is combined with (3.4), k = 1, for eliminating y_;.Then
D2h=3 4 goo(Dh™2 + 0.5vh71) D2p—3
Joo = — o y Jor = ko

ko = 0.5Dh™! + o(Dh™2 + 0.50vh71).

It is easy to see that Jo; > 0 and J is quasi-symmetric for all h. Also
Joo+Jo1 £ 0

for all k, when goo > 0, s0 fieo[J] = 0. This implies convergence as h — 0, and
an error that is O(h?). Also, kg = O(h™') if ¢0 = 0, ko = O(h~?), when ¢ = 1.

Another O(h?) approximation makes use of Taylor’s formula with equa-
tions (3.1), (3.2) to obtain

Uz, 0 h

— B 2
TT05R ~ 3D+ 05k {0t +0(hD)-

u'(O, t) =

Then, substituting this expression in (3.2) and omitting O(h?) terms, we obtain
the following O(h?)-approximation

. D _D+2n(1+ 2R)goo(t)
Y= Rk ¥ 2e0(1 + 2R) " T Th(1 + 2¢0(1 + 2R))
A similar formula is valid for the right DBC (1.3).

A simple O(h?)- approximation of the BCs (3.2), (3.3) is a second-order
one-sided approximation to the space derivative in the BCs:

Yo 4 2(1 + 2R)g01('l).

o —ptdn -3
€ofo = D Y2 2,y: g goo(t)yo + go1(?)
. 3Yn+1 — 4Yn + Yn—
E1Yn41 = =D i 2;'11 Ins1 910(t)Yn+1 + g11(2).

The Jacobian is pentdiagonal with

L]
€o

2D D

3D
Joo = (—EE - goo) » Jo1 = o’ Joz = = Seah’
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D 2D 1
Jnt1n-1 = ~2eh’ Jny2,n = ok Jntint1 = ('- 2h — g10)-

Similar numerical experiments by the help of MATLAB have been done
for the eigenvalues of the Jacobians resulting from the both described O(h?)
BCs approximations. They show that the behaviour of eigenvalues remains the
same as indicated in Tables 1 and 2.

The following particular case confirms analytically the numerical results
presented in details at the end of Subsection 3.1. By the assumption that in (3.1)
v = 0, on the left boundary is stated a zero Dirichlet boundary condition (thus
the number of unknowns becomes n + 1) and on the right one - the dynamical
boundary condition (1. 10), the elgenvalues A1 < A2 £ ... < Apg1 are found
to be ([12]) A\x = sin? -—5— , k=1,2,...,n+ 1, where )\k are the first n 4+ 1
positive roots of the equa.tlon cota = ;; tan @ This allows an estimate for the
ratio i’/‘f"—- to be obtained. It can be easﬂy shown that A’;‘\i— & ﬁ‘-*— and as
(k= 1)7 < ap < (k—1)m + % this leads to S(¢) = O(4n?). Thus the degree of
stiffness largely depends on the nature of the problem and the fineness of the
spatial discretization used.

4. Nonlinear problems

In this section we develop our analysis of the linear equations (3.1) -
(3.3), to the numerical solutions of the nonlinear problems (1.1) - (1.4), (1.7) -
(1.11).

4.1. The general case

It is natural to expect that under some reasonable assumption on the
nonlinear functions f, go, g1, the behaviour of the numerical solutions of prob-
lem (1.1)-(1.4) will be similar to those of problem (3.1)-(3.3). Since by the
considerations below the parameters g, €1 are fixed, we put g = €1 = 1.

The simplest approximation of (1.1)-(1.4) gives the following ODEs:

s . =
(4.1) Yo = go(t, Yo, L zhyo),
. Yk Yk=1 Y41 — 2Yk + Yk
(42) Y = f(mkvta Yk +12h y tl 72 A 1), k=1,...,n,

. - Y
(4.3) Unt1 = 91(t, Yn41, 'yltlh—n),
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with initial conditions yx(0) = ¢(2k),k=0,...,2+ 1.

We shall make the following assumption for boundeness of the nonlinear-
ities in the right-hand side of the problem (1 1)-(1.3):

(B) For all relevant arguments, |9 f/du’'|, |dgo/du'|, |0g1/du’| are bounded
and there are constants kg, k, k1 such that

(4.4) 0g0/0u < ko , Of/Ou<k , 0g1/0u < k.

Theorem 2. Let conditions (1.5), (1.6) and those in (B) be fulfilled.
Then the semidiscrete approzimation (4.1) - (4.3) of the problem (1.1) - (1.4)
converges on any finite interval 0 < t < T and the truncation error is 0(h).
When ko, k, k1 < 0 there is convergence for all t. Also, for a sufficiently small
mesh spacing h the system of ODEs (4.1) - (4.3) is stiff.

Proof. The equations (4.1) - (4.3) are assembled as a vector system
= F(t,y) of n + 2 equations. The Jacobian J = 9F/OU is a tridiagonal
matrix with

_ 1ag0 % lago
Joo = — hau'+8u , Jo1 = Yk
__209f of
Tkt =~ 55w t B
1 af 1 0f
Jk’kﬂ:I_ﬁW h o for k=1,...,n
lagl 13[]1 %

J, =——— ] =
n+1l,n h au ’ n+1l,n+1 h au: 3u
The off-diagonal entries are positive and the matrix is quasi-symmetric, if

d¢ 10
|J°| (_ =39,

h o'
of 2 0f
Ia—7, -_— (— hau”)’
Bm D 10m

for all components. Because of our assumptions about the boundedness of
|8go/du|, |8g1/0u|,|0f/du’| and the positivity of D, this will certainly be true
for all sufficiently small h. When it is true,

0
Joo + |Jo1] £ — go
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17} ;
(4.5) ik + | Tkge—1| + [Tk kg ] < —f, for k=1,...,n,

Jn+1 n+1 T lJn 'n.+1| < aa‘(s .
In view of (4.5) we see now that max(ko, k, k1) is a bound on the logarithmic
norm of the local Jacobian. Therefore, Theorem 1 applies, and establishes con-
vergence on any finite time interval 0 < ¢t < T. When ko, k,k; < 0, there is
convergence for all ¢. With one-sided difference approximations in the BCs, the
truncation error for smooth solutions is O(k), so that the error of the approxi-
mate solution is O(h).

Because the local Jacobian is quasi-symmetric, the eigenvalues are all
real. For small mesh spacing h, the following inequalities hold:

2 9 0 2D
Yo k= —mait < 2D ko,

h2 ou" = Ou
_ l(?!/o a!]O 1
(46) /\n+1 Z JOO == h au/ + = du O(h )

When ko, k1, k < 0, the logarithmic norm of J is nonpositive and all eigenvalues
are nonpositive. Then, it follows from (4.6) that the system of ODEs that
arise from MOL is stiff for all sufficiently small mesh spacing h. The proof is
completed. ]

When some of ko, k or k; are positive, the matter is more complex. In
such a situation eigenvalues with positive real parts appear, hence the solutions
of ODEs grow as exp(pt), p > 0. Shampine [10, pp. 749-750] discussed this
case using an argument of Gear [4, p.213]. The conclusion is that the system of
ODEs arising from the MOL is also stiff for sufficiently small spacing h.

4.2. The physical model

We continue to discuss the properties of the protype difference schemes
in (4.1) and (4.2) on the physical problem (1.7) - (1.10). Let us begin with the
approximation

(4.7) oo = p(0, t)L;;yl + 9(%o),
(4.8) 9k = Ly e + f(w), k=1,...,n,

(4.9) E1Ung1 = —P(l,t)L;,ynﬂ + 91(Yn+1),
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where

I 2k — Zhk=1 3
Lthz-—"{_, k=1,n+la
" Pk-0.52k—1 — (Pk—0.5 + Pk+0.5)2k + Pk+0.52k+1
thpzk = h2 ’

pr—os = p(zr — 0.5h), Pryos = p(er +0.5h), k=1,...,n.

Assuming that p(z,t) is three times and u(w,t) is four times continu-
ously differentiable with respect to z, the local truncation error & (h,t) of the
semidiscrete scheme (4.7)-(4.9) satisfies the inequalities

|®(h,t)| = |L'w — u'(zk,1)| < TCh, if k=0,n+1,

|¢k(h’ t)l = ILII:,puk - (p(wk,t)u’(wk,t))li < TCh27 if k= 1,...,m,

where C is a constant independent on h.
Now, from Theorem 2 it follows the next corollary.

Corollary.  Let the conditions (1.8) and (4.4) be fulfilled. If p(0,1),
p(1,1), p'(2,t), 0 < & < 1 are bounded on the interval 0 < t < T, then the
semidiscretization (4.7)-(4.9) converges on 0 < t < T and the truncation error
is O(h). When ko, k,k1 <00n0<t<T and p(O,t),p(l,t),p'(:c,t) are bounded
for all t, there is convergence for all t.

5. Numerical examples

Several properties of the theoretical discussion in the previous sections
can be observed in numerical experiments. In particular, with the numerical
examples we want to consider the following properties.

First, it is demonstrated that the implicit Runge-Kutta method of order
5 is more efficient than the diagonally implicit Runge-Kutta method of order 4.
When the solution varies rapidly for both methods we use solvers RADAUS and
SDIRK4, respectively, described in [5].

Example 5.1.
The following problem is solved numerically:

4
d(m,t)—ﬁu”(z,t)=0, 0<2<1,0<t<T< o0,

u(z,0) = sin -7;—":- +1,
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4

’l.l,(O, t) - 7l'2

2
W' (0,1) = —;e"us(o,t),
2 .
w(l,t) + Fu'(l,t) =1-u(l,t).
The analytic solution is
u(z,t) = e"*sin %‘E + 1.

The numerical results are displayed in Table 1, which contains the following
information:

NFCN Number of function evaluations,
NJAC Number of Jacobian evaluations,
NDEC Number of LU-decompositions of both matrces,
NACCPT Number of accepted steps,
Error The error at each ¢t was measured by:
1 n+1
Error(t) = [/ (we(t) — u(kh,t))zdt]% ~ [h Z(yk(t) - u(kh,t))z]%.
0 k=0

All the experiments use relative error tolerance TOL = 1075,

iy h RADAU5 / SDIRK4
NFCN [ NJAC [ NDEC [ NACCPT Error
0.1 10T 31 1 7 7 0.1160 * 10~3
36 2 10 10 0.1179%10-3
3.1072 31 1 7 7 0.1203 % 10-°
65 2 10 10 0.5835 % 10~5
5 | 1071 172 15 21 22 0.2080 * 10~3
314 15 26 29 0.2108 + 10~3
11077 162 15 21 21 0.1446 % 105
310 15 24 29 0.1986 % 10~5
30 | 1071 693 47 79 54 0.2088 « 10~5
659 44 70 60 0.2223 * 10~5
31077 687 48 81 54 0.2515% 10~©
638 48 72 62 0.1610 % 10~5
Table 3.

The second example confirms the conclusion of the second part of Theo-
rem 3.
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Example 5.2.

4
w(z,t) — Fu”(w,t) =0,

u(x,0) = sin % +1,

2e

- ea(0,1) - %u'(O,t) = ~Zeh3(0,),

. 4 _e?t, 3 . TWE & 2¢ TE
eu(l,t) — —u (1,t) = e *(—€”sin 5 + — cos -—2——)
The exact solution is ) aias
u(x,t) = e~ tsin -+ 1.

For the results see Table 4; compare with Table 3.

T h RADAUS5
NFCN | NJAC | NDEC | NACCPT Error
0.1 107! 28 1 7 7 0.512 % 10~°
11072 28 1 7 7 0.264 % 10~
1.0] 107! 35 1 8 8 0.184 x 10~°
31072 32 1 8 8 0.752 % 10~
5.0 107! 39 1 9 9 0.236 + 10~°
11077 36 1 9 9 0.768 + 10~ 13
Table 4. ¢ = h

MOL is sufficiently effective for numerical integration of parabolic prob-
lems with rapidly varying solutions or at long-time integration (see Table 3)
along the asymptotic solutions. The next numerical experiment gives an insight
into some open theoretical questions, namely - are there blow-up phenomena
and what is the blow-up set 57

Example 5.3.
Ut = Upy + %ur +(u+1)? in (0,1)x(0,00)
u(r,0)=1 ,7€(0,1)
ur =0 ,7=0
cug+ ey =—cau ,r=1,6>20,¢,>20,¢c220.

In the case € = 0 in [3,25.2], it is proved the following:
(i) if ¢z = 0 and u(r,0) = const > 0, then § = [0, 1],
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(ii) otherwise S = 0.

Our numerical experiments are in agreement with this theoretical result.
The result concerning (i) is displayed in Table 5. It is easily seen that near the
blow-up time MOL is not sufficiently exact. For better calculating the blow-up
solution specialized algorithms with variable time-step similar to those in [7]
will be of a great help. This is a subject of a next paper.

RADAUS5
T h u(®o),z0 =0 w(®1),z1=h uw(zn), ey =1
0.5 5.1073 | 57848591 % 108 | .57848573 x 108 | .57302637 x 10°
0.5000000177 .36619761 x 10'® | 18721881 % 105 | .60717356 * 10'°

Table 5. ¢y =1,¢c, =0,e =0

The numerical results when ¢ = 1 are given in Tables 6 and 7. They show
that when there is a dynamical boundary condition, the blow-up set is S = 0.

RADAU5
T h u(zg),z0 =0 u(zy),z1 = h u(zy),zny =1 | CPUTime, Sec
1.960500 103 0.21018412 % 10° 0.21000112 * 10° 0.14169260
1.960551 0.35845243 % 10!® | 0.51029403 % 108 0.14168536 1369.5055
1.971400 | £.10~3 | 0.15663673%10° | 0.15663249 x 10° 0.13944219
1.971469 0.43176681 * 101° | 0.15412547 = 101° 0.13943256 6523.7912

Table 6. c¢;j=cy=1,e=1

The CPU (Central Processing Unit) Time is measured in seconds.

RADAUS5
T h w(2g), 0 =0 w(zy), 21 =h |u(zy),eny=1
0.74 3.1073 | 23375982 % 10% | .23371089 x 10% | .50827897 * 10
0.7451917 .35872564 x 1018 | 44785251 % 107 | .53080172 % 10

Table 7. ¢; = 1,c =0,e = 1.
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