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1. Introduction

In Complex Analysis of Several Variables, Matsugu [13] gave a necessary
and sufficient condition for any pluriharmonic function g on a Riemann domain
Q over a Stein manifold to be the real part of a holomorphic function on 2.
The author [5] obtained similar results for a Riemann domain over a complex
projective space, Fukushima-Watanabe [8] and Adachi-Fukushima-Watanabe
[1] over a Grassmann manifold and the author [6]-[7] for domains over infinite
dimensional spaces.

In Quaternionic Analysis, Néno [15] gave a necessary and sufficient con-
dition that any harmonic function f; on a domain Q in C? has a hyper-conjugate
harmonic function fz so that the function f; + f2j is hyperholomorphic on Q2.
Marinov [12] developed systematically a theory of regenerations of regular func-
tions. Li [11] added a regeneralization in Quaternionic Analysis, too. The main
purpose of the present paper is to add a regeneration in the Clifford Analysis.

2. Regeneration

Let © be a complex manifold and f be a holomorphic function on .
Then its real part f is a pluriharmonic function on Q. Let (€2, ) be a Riemann
domain over a Stein manifold S and (Q, @) be its envelope of holomorphy over
S. Then, Matsugu [13] proved that, for any pluriharmonic function f1 on Q,
there exists a pluriharmonic function f; on Q so that f; + fai is holomorphic on
Q if and only if there holds H'(£2, Z) = 0, where Z is the ring of integers.

The field H of quaternions

(1) z =y + w2 + jo3 + kxy, z1,%2,23,24 € R
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is a four dimensional non-commutative R-field generated by four base elements
1, i,7 and k with the following non commutative multiplication rule:

(2) 2=j2=k=-1,ij=—ji=k,jk=—kj=iki=—ik=j.

@1, 2,23 and x4 are called, respectively, the real, ¢, j and k part of z. In
the papers Néno [14],[15], [16],[17] and Marinov [12] loco citato, two complex
numbers :

(3) z1:=a1 +ixg, 2p:=ax3+izg €C

are associated to (1), regarded as
(4) z=2z + 225 € H.

They identify H with C? = R*, denotes a quaternion valued function f by
f = f1 + f2j and use fully the theory of functions of several complex variables.

Using Laufer’s results [10], Néno [15] proved that the necessary and suffi-
cient condition that, for any complex valued harmonic function f; on a domain
Q in C2, there exists a complex valued harmonic function f; on Q so that fi+ f27
is hyperholomorphic on Q is that Q is a domain of holomorphy.

Marinov [12] named, those constructions of conjugate functions, regen-
erations and developed the theory of regenerations in Quaternionic Analysis,
using §-analysis of Hérmander [9]. The main purpose of the present paper is
to add a regeneration in Clifford Analysis, using Dolbeault Isomorphism from
resolution of sheaves.

3. Preliminaries

We use the definitions and notations in F. Brackx-W. Pincket [2]. Let A
be the universal Clifford algebra constructed over a real n- dimensional quadratic
vector space V with orthonormal basis {e;, ez, -,€en}. A basis for A is given
by

(5) {ea : A = (h1,hay- -+, hy) € P{1,2,---,n};1 < hy < he <+ < hy <},

where e4 = eg is the identity element 1.
Multiplication in A is defined by the following rule for the basis elements

(6) eje; = —eie; (i 75 ]), e;e; = —1.
An involution of A is given by

(7) /\:Zz\AeAr—»/—\=E/\AéA, A ER,
A A
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where é4 = (—1)"A(”A+1)/26A, n4 is the cardinality of A.
The inner product of two elements A = Z Ageq and p = Z paea of A
A A

is defined by

(8) <Ap>=2") Aapa.
A

Then the norm of an element A = Z Ageq of A is defined by
A

9) Al = 2"/21 [ X
A

which turns A into a Banach algebra.
Let m and k be positive integers with 1 < m,k < n,m + k < n. Let
be an open subset of R™ x R* and '

(10) FiQ o A,
(11) Q> (a:,y) = (1111,:82,' HTm,y Y1, Y2, '7yk) ihd f(x’y) = ZfA(fD,y)CA-
A

Now, we introduce the generalized Cauchy-Riemann operators

m k

(12) Do= eid; Dy=)_ ems;idy

=1 J=1

m k
(13) Do:= &8s  Dy:i=)_ &midy;,

i=1 =1

which act, for a function f: Q — A of class C!, as

(14) M ‘D f= ize.e _a__& D, = 3 ‘afA
zJ = ) Aax.’ f y—zz€A€m+Ja—y-.
: i=1 A ¢ j=1 A J

When i ¢ A, let B tbe he permutation of the set {i}{JA in the order from
small to large and €%' be the signature of the replacement iA — B. When
i € A; let s be the positive integer, which denotes the number of the place of ¢
in the permutation A with order from small to large, B the permutation of the
set A.— {i} in the order from small to large, €' be the number (=1)*~7+! and
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{i} U A = B stands for A — {i} = B. Then the above differential operators are
represented more concretely,

(15p.f =3 > 5 afA Jes,  fDy=3( > " afA)e

B {i}JuA=B B  Au{m+j}=B

A function f:Q — A of class C1 is called biregular in § if:
(i) for each y € R fixed, f is of C! in € Q, and satisfies D, f = 0,
(i) for each z € R™ fixed, f is of C! in y € Q, and satisfies fD, = 0.

By Brackx-Pincket [2], a biregular function is real analytic.

4. Main theorems

Theorem 1. Let m and k be positive integers with 1 < m,k < n, m +
k < n. Let P = (hy,ha,-+-,h,) be a permutation with 1 < hy < hy < --- < h,.
Let © be an open subset of R™ x R* and

(16) f:Q— A,

(AR 3 (2,9) = (21,22, *, Tmy Y1, Y2+, Ye) ~ f(2,9) = D falw,y)ea.
A#P
be a function of the class C*® on Q. If there exists a function fp of class
C*® on Q such that the A valued function f = Z fa(z,y)ea + fp(z,y)ep
A#P
is a biregular function on , the real valued functions fo(A # P) satisfy the
integrability condition

(18) dw=0
on 0, where the differential form w of degree 1 is given by
> 140fa
. i'A
(19) w=-3( > P Gy i

i=1 {iYUA={i}JUP,A#P

£ cAm+i 0fa
-3 > Pt gy ) Wi

J=1 AU{m+j'}=Pu{m+i},A#P
Conversely, if fa(A # P) satisfies the integrability condition (18)-(19) on Q
and if the domain Q satisfies H'(Q,2Z) = 0 for the ring Z of integers, then
there ezits a function fp of the class C*® on S such that the A valued function
f= E fa(z,y)ea + fr(z,y)ep is a biregular function on Q.

A#P -
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Proof. If there exists a function fp of the class C* on Q such that the
A valued function f = z fa(z,y)ea+ fp(z,y)ep is a biregular function on Q,

A#P
by the definition, there hold
ia0fa
(20) 0=D.f=>( Y, €& 52, )eB
B {i}JuA=B '
and o5
(21) 0=fDy=33( 3 "5 es.

B Au{m+j}=B

Hence, there exist the following relations between the derivatives of fa’s:

ofa
cA
(22) | > € B 5 =0
{i}JuA=B
and R
(23) N il -af—'f =0
AU{m+4}=B Yi

for any permutation B with order from small to large. Then the derivatives of
the function fp satisfy

140fa p0fp

i'A P ot

(24) . Z €p gm'—‘l"*' Z e‘B-a—;:-—O
{i"}UA=B,A#P {i}uP=B

and v

(25) E €gm+j' dfa + €£m+j afp =0

dyjr 0y;

Au{m+j;'}=B,A#P Pu{m+j}=B

for any permutation B with order from small to large. The derivatives of fp

are given by
(26) o _ . dadls,
% {iYUA={i}UP,A#P o’

Then, the differential w of the function fp

(27) Z af”d i+ E adey,

i=1
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is represented by other f4(A # P) as follows:

e : 3fA Am+j Ofa
w=-3(- ¥  dtzs Z( D Py, )i
i1 {(i}'UA={iJUP,A#P i=1 AU{m+j'}=B,A#P 4

(28)
Of course, there holds the integrability condition dw = 0 since w is the differen-

tial of the function fp.
Let p be a non negative integer, R be the constant sheaf of real numbers

over 2, £P be the sheaf of germs of differential forms of degree p with coefficients
of class C* over the domain © C R™ x R¥, d be the usual differential operator
d?P: P — EPF1 and ¢ : R — E° be the canonical injection. Then, by the lemma
of Poincaré, the above operators give a fine resolution

(29) 0-R—-E 5. .5 6P 5 gl

of the constant sheaf R over 2. By the theorem of Dolbeault [3], we have the
following Dolbeault’s isomorphism

(30) HP(Q, R) = HP(Q, (d%)71(0))/dP~ (H(2, £77Y))

for any positive integer p. By the universal coefficient theorem [18], we have
HP(Q,R) = H?(Q,Z) @R and, hence, H?(Q,R) = 0 if and only if H?(Q,Z) =
0, for any positive integer p. Therefore, from the assumptions H*(Q,Z) = 0
~and (18)-(19), we have w € HO(Q,(d')~1(0)) = d°(H°(R,£°)) and there exists
fp € H(R,£°) such that w = d°fp. The A valued function f := f(z,y) =
Z fa(z,y)ea of class C™ on Q satisfies D, f = 0 by (18)-(19) and w = d°fp,

A

and fD, = 0 by (18)-(19) and w = dOfs. Hence the function f is the esired
biregular function on @ with fp as ep component for other components f4
given. [

Corollary. Let Q be a domain in R™ x R* with H'(Q,Z) = 0-for the
ring Z of integers, P = (hy,ha,-++,h,) be a permutation with 1 < hy < hy <
«++ < hy, fa(A # P) be functions of class C* on Q satisfying the integrability
condition (18)-(19). Then the fa’s are harmonic functions on Q.

Proof. By the theorem, there exists a real valued function fp of class
C* on Q such that the A valued function f = E fa(z,y)ey is biregular on Q.

A

Since we have

(31) Agf:= E f D,D;f =0,

i=1
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kg2 o
fAy:=FY 997 = fD,D, =0,
j=1 "7k

fa’s are harmonic on €. ]
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