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Non-invariant hypersurfaces of a Kenmotsu manifold are studied. It is proved that the
fundamental 2-form of the induced (f,g,u, v, A)-structure on the non-invariant hypersurface
of a Kenmotsu manifold is closed. A sufficient condition for certain vector field on the hyper-
surface to be harmonic is given. A necessary and sufficient condition for a totally umbilical
non-invariant hypersurface of a Kenmotsu manifold to be totally geodesic is proved. Finally,
a sufficient condition for the induced (f, g, u, v, A)-structure to be normal and quasi-normal is
found.
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1. Introduction

There are two well known classes of almost contact manifolds, viz. Sasakian
manifolds [1] and Kenmotsu manifolds [2]. On the other hand, in [3] it is intro-
duced the notion of (f, g, u,v,A)-structure on a manifold. It is known that on a
non-invariant hypersurface of an almost contact metric manifold there always ex-
ists a (f, g, u, v, A)-structure. Motivated by this fact, in this paper non-invariant
hypersurfaces of a Kenmotsu manifold are studied. The paper is organized as
follows. Section 2 is devoted to preliminaries. In Section 3, some properties
of non-invariant hypersurfaces of a Kenmotsu manifold are given. It is proved
that the fundamental 2-form of the induced (f,g,u,v,A)-structure on the non-
invariant hypersurface of a Kenmotsu manifold is closed. A sufficient condition
for certain vector field on the hypersurface to be harmonic is given. In Section 4
we find a necessary and sufficient condition for a totally umbilical non-invariant
hypersurface of a Kenmotsu manifold to be totally geodesic. For a non-invariant
hypersurface with the induced (f,g,u,v,A)-structure of a Kenmotsu manifold
the second fundamental form is also calculated provided f is parallel. In the
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last section a sufficient condition for the induced (f,g,u,v,\)-structure to be
normal and quasi-normal is found.

2. Preliminaries

Let M be an almost contact metric manifold [1] with an almost contact
metric structure (¢,&,7,9), that is, ¢ is a (1, 1)_tensor field, £ is a vector field,
7 is a 1-form and g is a Riemannian metric on M such that

(1) ¢2=_I+77®£’ 77(5)=1, ¢(€)=01 no¢ =20,
(2) g(¢Xa ¢Y) = .(/(X’ Y) - "(X)W(Y)1
(3) g(Xa¢Y) = _g(¢X’ Y)7 g(va) = U(X)

for all X,Y € TM.
An almost contact metric manifold is known to be a Kenmotsu manifold

2], if ~
(4) (Vxo)Y = g(¢X,Y)E — n(Y)oX,

where V is the operator of covariant differentiation with respect to g. From (4)
it follows that

(5) Vxé = -¢*X = X — n(X)§, | X e TM.

Let M be a hypersurface of a Riemannian manifold M with a Riemannian
metric g. Then Gauss and Wiengarten formulae are given respectively by

(6) VxY = VxY + h(X,Y)N, (X,Y e TM),
(7) VxN =-HX +w(X)N,

where V, V are respectively the Riemannian and induced Riemannian connec-

tions in M and M; N is the unit normal vector in the normal bundle TIM;w
is a 1-form on M and h is the second fundamental form related to H by

The hypersux_‘f_ace M is known to be totally geodesic in M if h = 0, and
totally u@ilical in M if H = al.
If 77 is an almost contact metric manifold and M its hypersurface, then

defining
(9) $X = fX +u(X)N,

(10) ¢N = -U,
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(11) £=V +AN,
(12) n(X) = v(X)

for X € TM, we get an induced (f,g,u,v,)-structure [3] on the non-invariant
hypersurface such that

(13) fP=-T+u@U+vQV,

(14) fU ==XV, fV=2.U,

(15) vof=MAv, vof=-\u,

(16) wU)=1-A% w(V)=o{U)=0, o(V)=1-\2
(17) 9(f X, fY) = 9(X,Y) — w(X)u(Y) - v(X)v(Y),

(18)  9(X,fY)=-9(fX,Y), ¢(X,U)=u(X), ¢(X,V)=0v(X)
for all X,Y € TM, where A = p(N).

3. Some properties of non-invariant hypersurfaces

First, we state the following lemma whose proof is straight forward and
hence is omitted.

Lemma 3.1. Let M be a non-invariant hypersurface with (f,g,u,v,\)-
structure of an almost contact metric manifold M. Then

(19) (Vxo)Y = ((Vx/)Y —u(Y)HX + h(X,Y)U)
+ (Vxw)Y + h(X, fY) = u(Y)w(X))N,
(20) Vxé=(VxV = AHX)+ (h(X,V) = X\ + Aw(X))N,
(21) (Vx¢)N = (=VxU + fHX + w(X)U) + (~h(X,U) + w(HX))N,
(22) (Vxn)Y = (Vxv)Y — Ar(X,Y).

Proposition 3.2. Fora non-invariant hypersurface M with (f,g,u,v,\)-
structure of a Kenmotsu manifold M, we have

(23) (Vxf)Y =uw(Y)HX — k(X,Y)U - o(Y)fX - g(X, fY)V,
(24)  (Vxu)Y = —2g(X, Y) — h(X, [¥) - (X )u(¥) - u(X)o(¥),
(25) VxV =AHX + X - v(X)V,

(26) X, V)= -2v(X) - XX - dw(X),
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27) VxU = MX + fHX +w(X)U - w(X)V,
(28) (Vxv)Y = M(X,Y) + g(X,Y) — o(X)o(Y).

Proof. Using (4), (9) and (11) in (19) and equating tangential and
normal parts we get (23) and (24) respectively. Using (5) and (11) in (20) and
equating tangential and normal parts we get (25) and (26) respectively. Using
(4), (10) and (11) in (21) and equating tangential parts we get (27). Lastly, (28)
follows from (22). [

Theorem 3.3. If M is a non-invariant hypersurface M with (f,g,u,v,A)-
structure of a Kenmotsu manifold, then the 2-form F on M given by

F(X,Y) =9(X, fY)
is closed.
Proof. From (23), we get
(VxF)Y,2) = v(Y)g(fX,2) - v(Z)9(fX,Y) = u(Y)h(X, Z) + w(Z)h(X,Y),
which gives
(VxF)(Y,Z) + (VY F)(Z,X)+ (VzF)(X,Y) =0,

that is, dF = 0. . (]

Theorem 8.4. Let M be a non-invariant hypersurface M with (f, g, u,v,A)-
structure of a Kenmotsu manifold. If H = —\I, then V is harmonic.

Proof. From (28), we get
(Vxv)Y — (Vyv)X = 0.
Moreover, if H = —AI then from (25) we get VvV = 0. Thus, V is harmonic. =
4. Totally geodesic non-invariaﬁt hypersurfaces

Theorem 4.1. Let M be a totally umbilical non-invariant hypersurface
with (f,g,u,v,\)-structure of a Kenmotsu manifold. Then it is totally geodesic
if and only if
(29) w = —v —d(log A).
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Proof. If M is totally umbilical, putting H = «al, the equation (26)

gives
(30) =AM(X) - XA - Aw(X) = av(X).
Then M is totally geodesic, that is @ = 0, if and only if (29) is correct. ]

Theorem 4.2. Let M be a non-invariant hypersurface with (f, g, u,v,\)-
structure of a Kenmotsu manifold. If f is parallel, then we get

pu(X)u(Y) = A(1 = A)o(X)o(Y)

(31) h(X,Y) = o :

(32) w = —d(log A),
where p = h(U,U). Consequently, M is totally geodesic if and only if

(33) pu? = A1 =A%)

Proof. If f is parallel, then (23) gives
(34) (1= 2A)A(X,Y) = w(Y)u(HX) - do(X)v(Y).
From here we get

(1= 2A)A(X,U) = (1 - A)u(HX) = pu(X).

that is,

(35) pu(X) = (1 - A)u(HX).

From (34) and (35), eliminating u(H X'), we get (31). The equation (32) follows
from (31) and (26). The last part is obvious. =

5. Normal (f,g,u,v,\)—structure

In this section we find a sufficient condition for the induced (f,g,u,v,\)-
structure on the non-invariant hypersurface of a Kenmotsu manifold to be nor-
mal and quasi-normal.

Theorem 5.1. Let M be a non-invariant hypersurface with (f, g,u,v,)-
structure of a Kenmotsu manifold. If f commutes with H and v = w, then the
induced (f,g,u,v,\)-structure on M is normal.
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Proof. In view of (23), (24) and (28), we get

[/, I(X,Y) + duw(X,Y)U + do(X,Y)V
wX)fHY —HfY)—wY)fHX - HfX)

+ u(X)(w(Y) = v(Y))U — (Y )(w(X) = v(X))U.

S(X,Y)

Now, if fH = H f and v = w then S vanishes, that is, the induced (f,9,u,v,A)-
structure becomes normal. o

Now we recall the definition of a quasi-normal (f,g,u,v,A)-structure.
The (f,g,u,v,))-structure is called quasi-normal [4], if
9(S(X,Y),Z) - (dF)(fX,Y,Z) - (dF)(fY, X, Z)) = 0.
Then in view of Theorem 3.3 we get the following theorem.

Theorem 5.2. Let M be a non-invariant hypersurface with (f, g,u,v,\)-
structure of a Kenmotsu manifold. If (f,g,u,v,\)-structure on M is normal
then it is also quasi-normal.

In view of Theorems 5.1 and 5.2 we get the following corollary.

Corollary 5.3. Let M be a non-invariant hypersurface with (f,g,u,v, A)-
structure of a Kenmotsu manifold. If f commutes with H and v = w, then the
induced (f,g,u,v,\)-structure on M is quasi-normal.
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