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In this paper, for every nonnegative algebraic polynomial of degree four, we find an
explicit representation as a sum of two squares (Theorem 1). We discover necessary and
sufficient conditions for nonnegativity of an algebraic polynomial of degree four (Theorem 2).
Examples illustrating the application of Theorem 1 are given. Applications of Theorem 2 to
the sixth and seventh coefficients of the univalent functions of the class S are given as well.
Finally, we derive another method for solution of the problem.
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*

Let ao, a1, a2, as, ¢4 (ap > 0, ay > 0) be arbitrary real numbers such
that the polynomial

(1) y = apzt + @123 + a22? + azz + a4

is nonnegative for every real 2, ie. 0 < y < 400 if —00 < £ < +00. If such a
polynomial would have real zeros of order 1 or 3, then it would change its sign
which is impossible. Hence this polynomial can only have either one double real
zero and two complex conjugate zeros or one fourfold real zero or two double
complex conjugate zeros or two pairs complex conjugate zeros. It is well known
[1] that the polynomial (1) can be represented as a sum of the squares of two
other real polynomials of degree two at the most and such a representation is
not unique. In this paper we find two explicit representations of the polynomial
(1) as a sum of the square of real polynomials of degree one at most.



306 P.G. Todorov

Theorem 1. If the real numbers ag, a1, a2, a3, a4 (ao > 0, a4 >0)
are such that the polynomial (1) is nonnegative for every real x, then it has the
following two representations

a

(a2 X 2
(2) y=(2 \/%+12\/a_0+t1,z ao

. 2
' af / 2
+ | x4/ ag — - 2a0t1'2 + /a4 — aotl 2 ’
4ag !

where the radicals are arithmitic and t; and ty (t; < t2) are the two lesser real
roots of the Ferrary resolving cubic equation

(3) 8adt® — 4a2ast® + 2(aparaz — 4alay)t + 4apazay — apa? — a%ay =0

of (1) which in this case always has three real roots t1, t and tz (t1 <t < t3),
where the sign + is taken for such t; or ty for which

(4) az — ayty 2 > 0,

the sign — is taken for such ty or tz for which

(5) az — aity2 <0,

and the two signs £ are taken for such ty or ty for which

(6) az — a1t12 =0,

in which case the two signs + are reduced to the sign + because at least one of
the radicals in (2) vanishes.

If t; =ty < t3, the two representations (2) are reduced to one represen-
tation and the polynomial (1) has either one double real zero and two complex
conjugate zeros (if t; = ty < t3) or two double real zeros (if t; = t3 < t3 and
the two radicands in (2) vanish; in this case the representation (2) is a perfect
square) or one fourfold real zero (if t1 =ty = t3). Ift1 < ta < t3, the two
representations (2) are different and the polynomial (1) has either two double
complex conjugate zeros (if t; < ta = t3; in this case the two radicands in (2)
for ty vanish and (2) is a perfect square for t3) or two pairs complex conjugate
zeros (if t1 < ty < t3). These five cases are unique.

Proof. (i) Let 1,2 = oy £if1, 23,4 = az+if; be zeros of the polynomial
(1) where a2 and B2 are real numbers. In particular, 8; and (2 can vanish;
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this corresponds to double real zeros of (1). Then the polynomial (1) can be
written in the form
(7 y = ao(z — 21)(z — @2)(2 — w3)(x — =4)
= (l,()[.'v'2 - ((11 + (12)32 + ayjap — ﬂlﬂZ]z
+aol(By + B2)z — a1 B2 = )’

The identification of (1) and (7) yields the system of equations

(31

(8) Qq + Qg = —M,

4 2 2 az
af +4araz + a3 + B} + 63 = P
0

a3

a1(a 4 B2) + az(a? + p?) = ~5.

ag

(af + B])(e} + A7) = .
0

If we set

then from the fourth equation in (8) and (9) we obtain

(10) o182 + azf = :i:\/ '24:' -1,

where the radical is arithmetic. From the first and the second equations in (8)
we obtain

2 2 _ 22 M1
(11) B+ 6 =2 - i~ 2man

2
-4,/ _ 4 _
(12) Pr+ B2 =% a0 1al 2t,

where the radical is arithmetic. Now (12), (10), (9) and the first equation in (8)
transform (7) into (2) for ¢;. The identification of (1) and (2) in this case yields
the two irrational equations

2 .
(13) az — a1t1 = :1:2\/0,2 = il— - 2aot1 . Va‘g - aoi%,
4a0
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where the radicals are arithmetic. From (13) we obtain that ¢; satisfies the
equation (3). The assertions in (4), (5) and (6) for ¢; follows {rom (13) as well.
(ii) Now we can write (7) in the form

(14) y= ao(-’l: = :L'l)(IL' - 11:2)(2,' - &3)(23 bl .’1“4)

= ao[2? — (@1 + a2)z + a1z + B1P2]* + ao(B2 — 1)z — (1 fz — @2’
The same procedure leads us to (8) and to the values

124 + 22X
(15) ty = ajop + P12 = —1-—4—2—2—:3,

a.
(16) mm—mm=idi—&
ap
- _‘M_ﬁ_
(17) B2— P =% g0 4o 2t,.

The relations (14)—(17) yield the representation (2) in this case. The identifica-
tion of (1) and (2) for ¢, again leads us to the two irrational equations in (13)
but for ¢5, i.e. t; satisfies the equation (3). The assertions in (4), (5) and (6)
for 15 follow from (13) by the change of ¢; with ;.

(iii) The third root of (3) is determined by the equation 3 = (a2/2a0) —
t; — to with the help of the second equation (8), (9) and (15), i.e.

1 1 T1T2 + 232
(18) t3=§(a%+ﬂf)+§(a§+ﬂ§)—_—_ 1 22 3 4.

It follows from (9), (15) and (18) that the three roots 1,23 of the equation (3)
are real and that t; < t3 and ¢ < i3 since
_ (a1 = @2)? + (B1 + B2)? —ty = (1 — a2)® + (B1 — B2)?

i3 —t1 =
(19) 3 1 D) ) t3 2

If we assume that (y,2 > 0, then from (9), (15) and (19) we obtain ¢; <12 < i3
and the last part of the assertions of Theorem 1.

(iv) According to the Ferrari classic method, any polynomial (1) can be
represented in the identical form

y = (z2\/ao + mz\a/la_o + t\/ao)?
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2
(20) —[(2apt — ag + %)12 + (a1t — az)z + apt® — a4)
o
for any t. If some ¢ satisfies the condition
2 af 2
(21) (alt - (L3) - 4(2(tot —ag + m)(aot e (L,l) = 0,

then (21) leads us to the equation (3) which has three real roots in the examined
case, i.e. such t is equal to any root of the equation (3). Then (20) takes the
form

(22) y=(2*Vao+

al 2
2\/a_0+t\/¢1_0)

. 2
T E a
- :v\/;aot—ag—i-ﬁ--{-\/aotz—a“
0

where the product of the radicals in the second term has the sign of a1t — a3 .
From the comparison of (2) with (22) and (13) with (21) it is clear that the third
root t3 of (3) can also be used for the representation (2) but then the polynomial
in the second term of (2) will have pure imaginary coefficients if ¢; < t2 < t3.
In this case the product of the two radicals in the second term of (2) has the
sign of ag — ait3 as well. Really, it follows from (8) and (18) that

2

" .
(23) az — 4—;; — 2a0t3 = —ag(ay — a3)* <0
and

(24) as — aot} = ——( of + B} — o - B3)* < 0.

The equality signs in (23)—-(24) simultaneously hold only if 3 = 3 according to
(19). In addition, if ¢t3 = t3 from (19), (23) and (24) we aga,m obtain that (2)
as well as (22) are reduced to a perfect square.

This completes the proof of Theorem 1. [

Remark 1. The inverse assertion that if the three roots of (3) are
real, then (1) is nonnegative, is not always true. Really, from (21) we conclude
that the two radicands in the second term in (22) have the same signs if they
are nonvanishing for a real root ¢ of (3). In general, let ¢/, t”, ¢ be the roots of
(3). Then it follows from (22) that

ay

a .
(25) 2l =t + ./t = _i’ 2 = —  [y2 — e )
B o2 W a‘o aO
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/ ay : ’ a4
(26) :E’.'l)’” - t” + tuz - a_, ZE”{L’W = t” —- t”2 _ I’
0 0
i , aq ay
(27) :U’.’L‘w o= t/” + tlll2 — a_, (L'”:L‘I” -— tlll _ tIIIZ —_ ,a_
0 0

for a suitable choice among the zeros z’, 2", a , ¢ of (1). Thus from (25)—(27)
we obtain the roots

, 2" + a:"’x“’ o /2™ + ! v p _ o'zt + Py
@8) t=—7—"— t=—p — VT

With the help of (28) and (1) we get

(29) 2aot’ — ag + ai = a_o(w, +a" — 2" — gv)?
4(10 4
and
(30) a,()t'2 — a4 = .Z_o(m’m” i wmmiv)z’
2
" _a_l. = 92 ) M v 2
(31) 2aot” — a2 + 7 (2" + 2" -2 z*)
and
(32) tl(_)t”2 —a4 = %2(3:/:””1 _ wllmiv)2’
2
" _ s e PN v M N2
(33) 2a0t" — agz + v (' + 2% — 2" — ™)
and
m2 _ . _ QO 4 iv 0 0m\2
(34) apt a4 = 2 (xx 2"z ) 5

Now it follows from (29) and (30) that, for a real root ¢/, the two corresponding
radicals in (22) are simultaneously nonnegative or negative if 2’ + 2" — 2" — &
and z'z"” — z"'2" are simultaneously real or pure imaginary numbers, respec-
tively. It is clear for the first case that among 2/, 2", 2"/, 2% there can be real
roots of odd multiplicities and hence the polynomial (1) cannot be negative.

For the second case the representation (22) takes the form (2) and hence the
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polynomial (1) is nonnegative. Analolous conclusions follow from (31)—(32) and
(33)—(34), respectively. For example, the polynomial

y = apx? + ay2® + aza?, ap12 >0 (a3 = a4 =0), a% — 4agay > 0

has the roots

—ay + +/ 2 _ 4apasy ; —-ay — \/a2 — 4dapa;
IL‘” = 1 , wlll s 0’ 2 = 1

a
2(10 2(L0

2’ =0,

and hence it is nonnegative while the corresponding equation (3) is
2a0t3 = (lgtz =0

with the three real roots
a
=0 t'= —2, " =0.
200

From Theorem 1 and Remark 1 we obtain the following theorem.

Theorem 2. The polynomial (1) is nonnegative if and only if equation
(3) has three real roots t; < t; < t3, and the following four conditions are

simultaneously fulfilled:
2

(35) ag — 4%‘0 — 2agt 2 > 0
and
(36) ay — aot%’«z > 0.

Corollary. Under the hypothesis of Theorem 2, it is necessary that

2

a
(37) az — ﬁ - 2aot3 S 0
and
(38) ag — aot3 < 0.

The following examples illustrate the applications of Theorems 1 and 2.
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Example 1. For the polynomial
y=a2t—62+ 1422~ 142 +5 (1=t =2, t3=3),

we have

y=(2?-3z+2)?%+ (z-1)

and :
y=(2>-32+3)?-(a-2)72=(a- 1)%(a? — 42 + 5).

Example 2. For the polynomial
y=a'+2:3-322-4da+4 (h=ty=-2, t3= .Z_),

we have
y= (2% +2-2)°

and 5 3
y=("+e+3)7-Bz+3)=(2-1)(=+2)"

Example 3. For the polynomial
y=a?—823+242% - 322+ 16 (t1 =t2 =14 =4),

we have
y=(2? -4z +4)? = (z - 2)~

Example 4. For the polynomial

3
-3 h=1ls= 2),

£)2
2

y=a'+23 4522 +4a+4 (4=

we have
3
y:(.’l}2+(L‘— 5)24—(’1}\/74-

and
y=(:v2+a:+2)2.

Example 5. For the polynomial
y=at—4a® +112% — 142+ 10 (=1, t,=3, t3= g),

we have

y = (2 — 2z — 1) + (3¢ — 3)?,
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y = (22 — 22 4+ 3)2 + (z - 1)%,

and
3

7
y=(w2——2m+§)2—(—

2)2 = (2% — 2z + 5)(2% — 2z + 2).

Remark 2. With the help of the identity
1 1
Vrdt =50+ + 50— 9

some of the representations (2) can be expressed as a sum of two squares of
quadreatic trinomials. For example, from the two representations of y in Exam-
ple 5 we can obtain the corresponding new representations

1
y= 5(:1,2 +z—-4) 4+ %(12 — 5z 4 2)?,
and 1 1
Y= :?-(12 -z 422+ 5(m2 — 32 4+ 4)2.
Applications to the univalent functions of the class §

In the problems about the sixth and seventh coefficients of the univa-
lent functions of the famous class S it has to establish the positiveness of the
polynomials [2]

(39) y=6:v4—16:1:3+17ﬁ.7;2—§52x+1,
99 216 169
40 _ a9 1000 o
(40) y=2 7 + T 8z +1
and
55 80 110 40
41 _ 04 895, 1102 20 1.
(41) y=13® = + 9 " 7 @+ 1

Now we use our criterion, expressed by Theorem 2. For the polynomial (39),

the eqation (3) is
9 49 719
B2 2, _
7t T 90 9450 0

with roots ¢y < 13 < t3, lying in the open intervals

25 1
3,0. 39,22 = 0.3968253...), (—==0. ...,0.
(0.3,0.39), (0.9, 5 = 0.3968253...), (\/6 0.4082482. ..,0.6),
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respectively, for which the corresponding conditions (35) and (36) are fulfilled,
i.e.

25 1,

g - 0,

63 t1,2 >0 6 t1.2 >

as well as the corresponding conditions (37) and (38) are fulfilled, i.e.

1 2
b ¢ .
63 t3<0, 6 3<0

Hence, the polynomial (39) has two pairs complex conjugate zeros and it is
positive for every real . Analogously, for the polynomial (40), the equation (3)

is
B Eigtz 259 . 1561

198" T 1089 ~ 71874
with roots t; < ty < t3 , separated in the open intervals

t3

563 /7
— = 0.25 ce — = 0. ..., 0.
(0.2,0.25), (0.25, 2178 0.258494...), ( 99 0.2659078...,0.4),

respectively, for which the conditions (35) and (36) are satisfied, i.e.

563

7
51_78——t1'2>0’ ——t¥,2>0,

99

as well as the conditions (37) and (38) are satisfied, i.e.

7 2

E - t3 < 0.

Therefore, the polynomial (40) has two pairs complex conjugate zeros and it is

positive for every real z. Finally, for the polynomial (41), the equation (3) is
14 486 8252

B 220 _ Dede
9t+605 59895

with roots t; < t; < t3 in the open intervals

542 14
(0.4,0.49), (0.49,1—0—8—9 = 0.4977043...), (\lg = 0.5045249...,0.6),

respectively, for which the conditions (35) and (36) hold, i.e.

542

14
085~ 12 >0 gz -t >0,

55
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as well as the conditions (37) and (38) hold, i.e.

542 4,
m—t3<0, 5—5'—t3<0.

Consequently, the polynomial (41) has two pairs complex conjugate zeros and
it is positive for every real z.

Another method for solution of the problem

The Horner transformation

(42) y=£— L

4(10
reduces the polynomial (1) to the form
(43) y = aof" + p€® + g€ + 1,
where
3a?
(44) pP= —-8—(1—1 + az,
2
al  a1d?
q = =g + as,
8a0 2ap
R & B B3y (MY
T—00(4a )= ( ) (4a0) 43 1ag T

According to Descartes’ solution of the quartic equation (see, for examples,
Dickson [3, pp.42-43] or [4, pp. 52-53]) we set

(45) Y = (Vaot® + k€ + 1)(vao€® — k& + m),

where k, I, m are new unknown coefficients. The comparision of (43) and (45)
yields

(46) IVag + my/ag—k*=p, k(m-0=¢q, Im=r.

It follows from the first two equations of (46) that

_ p+k® ¢ _lp-i-k'2 q
(47) -(\/— ~ %) m-—g(\/a—o + )
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From the third equation in (46) and (47) we obtain the Descartes resolving
equation

(48) ™+ 2])7'2 + (])2 — 2ao7)T — agq2 =0, k=T

With the help of (48) we can verify that (43) can be written in the form

R 2 , P+tTy 4 2
It follows from (49) that the polynomial y is nonnegative if and only if the root
T of the equation (48) is negative. Inserting (42) and (44) in (49), we obtain the
corresponding representation of the polynomial (1) as a sum of two squares of
polynomials of degree two at the most. See in Dickson [3, p.45, the Theorem]
other criteria for the nonnegativity of the polynomial (43).
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