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1. Introduction

Line groups are the spatial symmetry groups of three-dimensional ob-
jects periodic along a line ([1]). They are also subgroups of the full Euclidean
group that leave one line invariant. Other than pure mathematical interest,
these groups have been studied in the context of Quantuum Physics of quasi-
one-dimensional metals and conducting polymers. For these physical systems,
line groups play the role analogous to that of the point groups in Quantuum
Chemistry, and crystallographic space groups in Solid State Physics.

Line groups can be derived ([2]) by utilizing theory of group extensions
([3]), in analogous way as it was done for the space groups ([4-7]). Using the
normal-subgroup-chain structure, it is also possible to derive their unitary irre-
ducible representations (ireps) ([8-10]) by the Mackey induction method ([11]).

In this paper, we report the reduction coefficients of the symmetrized
Kronecker products of the ireps of line groups isogonal to the point groups Cp,
S2n, and Dy, where n = 1,2,.... These ceofficients play the key role in deter-
mining the selection rules for various physical processess in polymer molecules
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and quasi-one-dimensional solids. Analogous results have been published al-
ready for all the point groups and for some of the crystallographic space groups,
and they have been utilized extensively by the quantuum chemicists and solid
state physicists, [12-14]. More details can be found in [1].

As in [1], we have utilized three independent methods to derive and check
the entries: the standard character formulae, construction of symmetry-adapted
bases, and the direct summation a posteriory.

For the sake of the readers whose interest is restricted to utilizing the
selection rules, in Section 2 we have enclosed a brief summary of the line-group-
theoretical notation, and then have presented the results in form of tables, one
for each family of the line groups under study, in Section 3. The duscussion of
the physical interpretation of the results is given separately, in Section 4.

2. Notations

L : line group

SKS : symmetrized Kronecker square

[D?] : SKS of the irep D

1D : one-dimensional

2D : two-dimensional

oy : reflection in a horizontal mirror plane
U : rotation by m around a horizontal axis
A+ : 1D irep, even with respect to op (if oy belongs to L) or U (if U belongs
to L)

A— : 1D irep, odd with respect to og or U
E : 2D irep

k : quasi-momentum

m : quasi-angular momentum

We choose the units so that A/27 = 1 and the translation period a = 1;
then —7r < k<mand m=1,2,...,(n—2)/2 for n even, and m = 1,2,...,(n—
1)/2 for n odd.
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Symmetrized Kroneker Squares .

3. Tables of SKS of the ireps of line groups

isogonal to Cj,,, S,, and D,

u-ug 0 ,. [2/u ‘p/u) x

wg 0 o [p/u “p/u-) x
u+wg 0 (+,uryo) [p/u- Z/u-) x| (Furyr)
u-wg 2T N [z/u “p/u) 73

wg A » [p/u “p/u-) 2"
u+wg AT | (-, WYL)+(+,WYL)+(+,W0y0) [p/u- ‘g/u-) e

u-wg Yg2g " [zupm) | (zm)

wg [ Yoz - [prupmu-) | (7m)
u+wg A4 ” [pfu-z/o-) | (Z/)

u-wg 1z .. [cupm) | (2a0)

wg T4 " [prapru-) | (2/e0)
u+wg T4 (g 3)+(+,uryo) [pro-zu-) | (o) | (ugy)
u-wg 0 ” [2/u “p/u) 0

wg 0 ” [p/u “p/u-) 0
ufwg 0 (+,uryo) [p/u- Z/u-) 0| (Furyo)
u | A | Lal | u | x| a|

** 71 = u ‘wi/wy sdnoi3 auy oy Jo sdaxy 3y Jo §YS °I JqeEL
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b-wg 0] (- myo)+(+uryo)+(-[bz-miz]yo) [b z/(1+b)] x
b-wg 0 (-, UIY0) +(+,Wy0)+(+WTY0) [z/b 1] =
b+wg 0 (-, WY0)+(+,UIy0)+(+W7y0) [0 ‘z/(1+b-)] x
b+wg 0 | (-, my0)+(+wyo)+(+[bz+mz] vo) [z/b- ‘1+b-] x| (wgx)
bz-wz | YguT » [b z/(1+b)] T
wg [ YT » [2/b “T/(1+b-)] T
bz+wz | AT (W) +(+,uryo) [z/b- “1+b-] T
b-wz | zug 5 [beal| (7w
b+wg | zuT » [0‘T+b-]| (x°Zm)
bz-wg 1 5 [b<z/(1+b)] | (zZ/x0)
wg A " [eb7/(a+b-)1 | (zre*0)
bz+wg 1Z (ug,¥) + (+,wyo) [gb-“1+b-]| (Zx‘0) | (wapD)
bz-wg 0 ” [bZA1+b)] 0
wg 0 » [z/b “T/(1+b-)] 0
bz+ug 0 (+,uyo) [z/b- ‘1+b-] 0 | (Furyo)
ur | A | [al| u | v al

320

»++ ‘7 ‘1 =b ‘wi/"(bz)7] sdnois aurf 3y Jo sdaxr 3 Jo SIS ‘7 AqEL
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u-wg 0 (-,uryo) [z/u “p/u) 0
wg 0 (+,uryo) [p/u “p/u-) 0
u+wyg 0 (-, uryo) [p/u- ‘z/u-) 0| (Fmyy)
u-wg AZ-LT | (-, WYL)+(+, WyL)+(- Wyo) [z/u “p/u) T/
wg NC-2T [ (-, WYL)+(+,WYL)+(+,UIyo) [p/u p/u-) T/
u+ug NC-2T | (-, WVL)+(+,WYL)+(-, uryo) [p/u- ‘z/u-) T
u-wg Yz » [zrupm) | (xZm)
U+ Yg-xg (W Y)+(-, wryo) [pru- o) [ (/)
wg 1z (g ) +(+,wyo) prupu-) [ @A)  (ug)
u-wyg 0 (-, uryo) [2/u “p/u) 0
wg 0 (+,uryjo) [p/u “p/u-) 0
u+wg 0 (-,uryo) [p/u- ‘Z/u-) 0| (Fwryo)
Jur | N | Lal _ u | A | a|

% T =u {(A7)T pue*** ‘g ‘1 =u ‘A7 sdnoag aul| 3y Jo sdaxy 3y Jo SVS °¢ d|qe],
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wz-u 0 . [2/(t-u) p/(1+0)] 0
wg 0 ((mgo)+(+0v0) /(o) 1] o (w3
0] 0] (+0v0) _ 0| o] &ow) |
u+ug- 0 » [2/(1-v) ‘p/(1+u)] T
wg 0 » [¥/(1-o) 1] [
wg- 0 . [1- p/(r+u-)] 75
Uy 0 (uFY)+(+0Vv0) [p/(1-u-) ‘T/(1-0)-] [
0 0| (ovx)+(+0Vx)+(+0V0) 0 e
u+wz- A7 5 G0 P+l | @A)
wg- xT M b/Go) p/+u)] | (7m)
u-wg- X b w/Gu) T/Gu-l] @7
u-wg 74 5 GO w/a+o] | (@)
wy A " /(o) p/(+u)] | (2x0)
u+wy A (wg Y)+(+ovo) /G ZGu1| @~o)| (@D
wz-u 0 % [2/(T-0) “p/(1+0)] 0
wy 0 (wgo)+(+0y0) [v/(1-u) ‘1] o| (ugo)
0| 0| (+0v0) _ 0| o] &ovo) |
m A [ _ w] A

»e ¢ 61 = u ‘gur] sdnoas auyf 3y Jo sdaxr 3y JO SHS ¥ AAGEL
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0 0| (-bvo)+(+byo)+(+ovo) p/u 0
wg-u 0 ” [2/(z-) ‘p/(T+u)] 0
wg 0 (,wrg0)+(+0v/0) [¥/(z-u) 1] 0 ()
0 0 (+oy0) 0 ol Gbyxm)
0 0 (+oy0) 0 0| ovy)
0 o Cbvr)+(+byxr)+(+ovo) p/oF (7
0 0 » T K
0 0| (-ovu)+(+oyr)+(+0V0) 0 73
u+wz- 0 " [2/(1-0) ‘p/(T+)] 73
wg 0 5 [p/(z-u) ‘1] 73
wz- 0 o [1- ‘p/(T+u-)] 73
u+wg 0 (urgr)+(+o0yo) w/(z-u-) T/z+u-)] 73
u+uIg- T4 5 (z/u“ppuf (/)
wg- yZxg » [¥/(z-0) “p/u-] (xZ/)
u-wg- NZxg " l/(z-u-) ‘T/(T+u-)] (xZm)
u-wg T4 " [z/u ‘p/(z+u)] (zne0)
wg A ” [p/u “p/(z+u-)] (z0)
u+wg A (W Y)+(+ov0) Lp/u- ‘T/(T+u-)] (zn0) (W)
0 0 (+oy0) 0 0| (bvo)
0 0| (-bvo)+(+byo)+(+ovyo) p/u 0
wg-u 0 » [2/(T-v) p/(T+u)]
wg 0 (,urgo)+(+o0yo) /(T-o) ‘1) 0 (wgo)
0 0 (+oyo) 0 0| (ovo)
u A Lal w i a

*** % ‘¢ = bg = u ‘gzuy sdnois auy| 3y Jo sdoxs oyy Jo SIS °S AqEL,
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duwz-u| o 5 [2/(1-d-u) p/(1+dz-u)] 0
dvwz [ o (,wg0)+(+0y0) [p/(1-dz-u) ‘7/(1+d-)] 0 ()
0] o] (+0y0) _ 0] o] Gyd-uvy)]
| o] o] (+oy0) _ 0] o] Gudw]
uwz| o . [¢/(1-v) ‘p/(d-ug)) [ zhe
dwz-u| e (p/(d-ug) p/(d-v)) | 7/
wz| 0 N (p/(d-u) p/d-) | e
d-wz-| ¢ , (p/d-‘p/(d-u-)) | e
utwg [ o (wgL)+(+0y0) (p/(d-u-) ‘Z/(T+u-)] | /e
of o ” p/(d-u) | zae
0| of (g/ld-ulyx)+(+z/[d-ulyx)+(+oyo) p/(d-u-) | A
7/d- » uaAd d 10§ ‘p/(d-ug) | /e
7d-| 0 (-7/d-yr)+(+7/d-yx)+(+0y0) uors d 10 p/d- | g/
«| «| ®99[qel 93s, (wygY)+(+0y0) ©°'0 J[QR[, 39S, " (wgy)
wz-ul o " [2/(1-u) p/(T+u)] 0
wz | 0 (,wg0)+(+0y0) [p/(1-u) 1] 0 (o)
| o] o] (+0y0) _ 0] o] (Fovy0) |
T @ | m] ] q]

TUE T p=d e e p = ug'uy sdnoad auyf oy jo sdat oy Jo SIS ‘9 A1qe
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ol o (-bvo)+(+byo)+(+0v0) p/dz-m)| 0
d-wz-uf 0 ” [z/(G-d-u) p/z+dz-w]| 0
d+wz| 0 ((ugo)+(+0v0) [¥/(z-dz-u) ‘z/(1+d-)]| 0 (W)
0] o] (+ov0) _ o] o] Gzd-ulvy)|
0| o] (+0v0) _ o] o] Grd-wyj
u-wz| 0 ” [z/u p/(d-ug))| T/
d-wz-u| 0 ” (y/(d-ug) ‘p/(d-u))| T/
wz| 0 » (y/(d-u) ‘p/d-)| T/
d-wz-{ 0 5 (p/d- ‘p/(d-u-))| T/
w+wz| 0 (mgL)+(+0v0) (y/(d-u-) ‘T/(z+u-)]| T/
ol 0 » p/(d-u)| TA
ol ol Cz/d-ulvr)+(+z/[d-u]yx)+(+0v0) p/(d-u-)| T/
o 0 5 p/(d-uz)| T/
ol o] (z/d-vr)+(+7/d-vx)+(+0V0) p/d-1
v | #%| TLOIGBL IS4y (WHY)+(+0V0) ®'/ 9[QBL sk | x4 (way)
ol o (-bv0)+(+byo)+(+0vy0) paf 0
wz-u| 0 5 [2/(z-v) p(1T+W]| 0
wzl 0 (ug0)+(+0V0) w/(-wtl] o (wgo)
0| ol (+0v0) _ o] ol (7byo) |
0] of (+oy0) _ o] of (Fovo) |
| Lal _ wi | a|

pu ées ‘7 ¢y = d o p ‘7 = u ‘g sdnoasd auij 3y Jo sdadr a3 Jo SHS L 3qEL
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d-wiz-ug YZ-xg [1-u ‘z/u] [z/u‘p/(dz-ug)] |  (xZ/m)

d-wz-u Zxrz [1-u‘z/z-u)] [p/(z-dz-ug) ‘pA(dz-u)] | (x ‘T/)

d-wz-u ST [z/(z-u) 1] [z p/(dz-w)] | (xT/)

d-wz- Trg [1-u ‘Z/(y-w)] v/(z-dz-u) z/(z+u-)] | (“T/)

d-wgz- AL [2/(p-u) ‘1] p/(z-dz-u ‘p/(dz-u-)] | (2 T/)

d-wgz-u- AT [2/(9-v) ‘1] [p/(-dz-u-) ‘7/(z+u-)] | (2 *T/0)

u-wg 1Z [1-u ‘] [zrup/z+)] |  (TAc°0)

wg A2 [1-u‘] [p/u p/(z+u-)] | (2 °0)

u+ug A [1-u‘] [p/u- T/(T+u-)] | (T °0)

J A d w Tl

€L QB Las

d-wiz-ug Yz-dz [1-u ‘z/(c+u)] [2/(1-u) ‘p/(1+dz-ug)] (r7m)
d-wz-u Az-dz [1-uz/(+w]|  [pA1-dz-ue) ‘pA(T+dz-u)] (g
d-wz-u ¥z-dg [z/(1+v) ‘1] [2/(1-v) p/(1+dz-u)] (rzn)
d-wiz- ¥z-dz [1-u Z/(1-u)] [¥/(1-dz-u) ‘z/(1+u-)] ()
d-uiz- Yz-dz [2/(t-0) ‘1] | [pA(1-dz-u) p/(T+d-u)-] ()
d-wgz-u- Yz-dz [z/(c-u) 1] [p/(1-dz-u-) ‘z/(1+u-)] (rzm)
u-wg AT [1-u‘] [2/(1-v) ‘p/(1+u)] (Z30)
wg Az [1-u‘r] [/(1-u) ‘p/(1+u-)] (zne0)
u+wy AT [1-u<1] [p/(1-u-) ‘Z/(1+u-)] (o)
Ju A d w i

€9 9Iqe L«
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4. Discussions

The main goal here is to deduce the selection rules in the form of con-
servation laws for the relevent line-group theoretical quantuum numbers: k (the
quasi-momentum), m (the quasi-angular momentum) and + (the parity with
respect to the reflection in og, the horizontal mirror plane, or U, the horizontal
rotation by ).

Starting from the quasi-momentum, we can see that it is conserved in
all cases. If the initial state has the quasi-momentum % and the final state has
—k, the perturbation must have —2k. In the case that +2k sticks outside the
first Brillouin zone, an ”Umklapp” happens, the reduced quasi-momentum of
the perturbation is 2k & 27.

The quasi-angular momentum m is also conserved in the cases when the
generating rotation (C'n|0) belongs to the line group. This is the case in all the
symmorphic line groups, viz. the groups Ln/m, n = 1,2,...; La, n = 1,2,..;
and Ln22, n = 2,4,.... Since the order of the rotation subgroups is finite, n,
one has that m=m(mod =n). In the present case, this allows that m' = 2m + n.

In the remaining, non-symniorphic line groups, viz. L(2¢)y/m, ¢ =
1,2,..5 Lny2, n = 1,3,..,, and p = 1,2,...,0 — 1; In,22, n "= 2,4,...,,
p=1,2,...,n — 1; the rotations are coupled with fractional translations. The
corresponding group generators are (Cy4|1/2) and (Cy|p/n), respectively. For
this reason, the above equivalence changes into m=m(mod n — p). Therefore,
we get m' = 2m % ¢, 2m + 2q and m' = 2m £ (n — p), respectively.

Finally, the parity with respect to oy is preserved without exceptions in
all the line groups isogonal to Cyj, since each of these contains (of|0). The
symmetrized Kronecker squares thus must be even with respect to og. This is
a very strong restriction: in this case, only even perturbations can cause strong
(first-order) scattering. '

The situation is analogous in al the line groups isogonal to D,,, since each
of these contains (U|0). Here, all the allowed perturbations must be even with
respect to U.

The line group isogonal to Sy, depart from this general pattern, because
in this case the rotations and reflections are coupled; the group generators in-
clude (.52,]0), where Sz, = ogCa,. For this reason, whenever the quasi-angular
momentum undergroes an ”Umklapp”, i.e., a jump by n, the parity is reversed.
In other words, odd perturbations are allowed for m larger than n/4, while even
ones are allowed for smaller values of m.
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