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Nowadays statistical software aims at creating intelligent statistical agents. These
agents embody statistical expertise and knowledge that allows them to exhibit intelligent be-
haviour, to cooperate with users and other agents in problem solving and to reason under
uncertainty.

The first aim of this article is to show an approach to modeling of the belief of a sta-
tistical agent in the normality of the population distribution. The agent’s belief is a threshold
function of the certainty with a multitude of values - the set of the states of the belief. The
rule for defining the state of the agent’s belief is based on: a function describing the utility
of the state, a conditional distribution of the agent’s certainty, the condition being the tests’
results and a conditional distribution of the post-test result, the condition being the pre-test
result, and also on threshold values of the pre-test and post-test results.

The second aim is to discuss an approach to optimizing decision rules determining
the states of agent’s belief. This approach takes into consideration a priori knowledge. It
represents an application of Bayes’ approach.
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1. Introduction

The purpose of this work is to present an approach to modeling of the
agent’s belief in the particular case when the belief concerns the form of the
probability distribution of the population under investigation.

?The reflection of reality can be true and untrue. In the process of com-
munication people feel the necessity to express their attitude towards facts, phe-
nomena, actions, etc. Sometimes they need to stress explicitly on their confi-
dence (especially if there are doubts or vacillations in the interlocutor).” ([4])

We shall define the concept agent’s belief in the following manner:

The agent’s belief will be measured by a real number, called certainty.
We say that the agent believes in the truth of a given statement if the certainty
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is not smaller than a number that is known in advance. That means that the
agent’s belief is a threshold function.

*The suspicion is an assumption connected with some doubts in the re-
vealing of an unknown quantity. It manifests itself in the search for the truth.”

4])
( "The certainty is connected with the authenticity, veracity, the possibility
and the confidence that something has happened or will happen. It is both a state
and a volitional category.” ([4])
Formally, the suspicion and the certainty will be defined as possible values
of the threshold function belief.

The rule for defining the state of the agent’s belief is based on:

e a function describing the utility of the state,
e a conditional distribution of the agent’s certainty, the condition being the
tests’ results and a conditional distribution of the post-test result, the

condition being the pre-test result,
e threshold values of the pre-test and post-test results.

There are several techniques available for empirically assessing the math-
ematical form and the parameters of a utility function ([3], [6], [9]).

Both the conditional probability distribution of the agent’s certainty on
the values of the tests and the conditional probability distribution of the post-
test result on the value of the pre-test must be stochastically increasing. This
condition is met in many distributions widely used. For example, members of
the one-parameter-exponential family (normal, binomial, Poisson, etc.) have a
monotone likelihood ratio, which implies that the requisite posteriori distribu-
tions are stochastically increasing ([2]).

The task is set to have the expected utility maximized and thus the
threshold values of the pre-test and post-test results are optimized.

2. Formulation of the task

The necessity for defining the agent’s belief about the type of the prob-
ability distribution arises from the fact that the population distribution, which
is at the root of many models of the mathematical statistics, is unknown. As a
result of this insufficient knowledge comes the indefiniteness at the choice of the
appropriate method for statistical analysis, i.e. the indefiniteness at the choice
of the best behaviour of the agent, making the statistical analysis.

Let 7" be a random variable which has a probability distribution on the
set ; = [0,1]. Let ¢ € 9 be a possible value of T'. We call the random variable
T agent’s certainty. :
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Let £, be divisible by {A; = [tk,tk+1] tr, € Qytpyr € Q,k=0,1,...,n—
1},i.e. A;iNAj; =0 when ¢ # 7, and E A = Q.

Let 6 be a categorical vauable whlch can take on values from the set
D = {ag, @1 ecy Gn=1} +

We are going to define the random variable Bel as a function of the
random variable 7" in the following manner:

ag if to<T <t,
Bel(T) _ ay if ¢ <T <ty

oy if t,1<T<t,.

The random variable Bel(T') will be called agent’s belief. The values
g, A1, ...y @y—1, Which the random variable Bel can take on, will be called deci-
sions, or states of the belief. We shall call the set D a set of the possible states
of the belief.

Consider the agent’s belief about the normality of the population distri-
bution. In this case D = {ag, a2}, where:

ap means that the agent rejects the assumption about the normality of
the distribution, which describes the population under consideration.

a; means that the agent is certain that the distribution, which describes
the population under consideration, is normal and it will use this assumption in
the statistical analysis.

The agent’s belief about the normality of the population distribution has
the following form:

_ a if 0L<T<t,,
Be’(T)‘{a2 if t.<T<1,

where t. is a known constant. For example, ¢, = 0, 95.

Our objective is to determine the value of the function § = Bel(T'). In
this case we say that the agent makes a decision § € D. However, the agent’s
certainty is an unobservable random variable.

The agent’s belief in Gaussian probability model (i.e. in the normality of
the probability distribution) must be based on the knowledge of the mechanism
of the phenomenon under investigation. But if the phenomenon under inves-
tigation is unknown, the agent can make its own choice about the probability
distribution after it has tested a Goodness-of-fit hypothesis. We shall elucidate
this statement.
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Let X1, X32,...,Xn be a random sample from the distribution of the ran-
dom variable, describing the population. We would like to know whether it is
rational to examine this random variable as normally distributed.

Let 21,22,...,%n be the experimental values of X3, Xy, ..., Xy, respec-
tively.

We propose the statistical hypothesis Hg that the experimental data ale
values of a random variable with normal N (g, o2) distribution where p and o?
are determined.

A statistical test is the rule by means of which we make a decision to
reject the statistical hypothesis Ho or not to reject it.

A significance level a of the statistical test is the maximum probability
for the rejection of the null hypothesis Hp, when it is true.

Let U = u(X1, Xz, ..., Xn) be the statistic of the optimal statistical test,
the probability distribution of which is known on condition that the null hy-
pothesis is true. Let u = u(x1,232,...,&,) be the value of the statistic. Then
p(21, %2y, 2n) = P{U > u(z1, 232, ..., %5)/ Ho} is called p-value of the test statis-
tic. A result is statistically significant when the p-value is less than the preset
value of a.

Then the statistical test has the following form:

If p(z1,22,...,2n) < @, where @ = 1 — t. is the desired significance level
of the statistical test, then the null statistical hypothesis is rejected in favour
of the alternative hypothesis. Otherwise, we have no reason to reject the null
hypothesis, i.e. we think that the data we have do not give reasons to reject the
hypothesis for normality.

After the Goodness-of-fit hypothesis has been tested at a significance
level & = 1 —t., the agent can make its preliminary choice about the probability
distribution.

However, if the sample size is not big enough or the results from the
measurements are located in a sufficiently small interval of change of the random
variable that describes the population, then the experimental data can concur
well with different probability models. That is why one must not attach much
importance to the positive result of the testing of hypotheses.

We emphasize once again that the choice of the appropriate probability
model must be based above all on the understanding of the mechanism of the
phenomenon under examination.

When the agent makes a decision about the form of the probability dlS-
tribution, he can ask the user and make use of its expertise and intuition.

If the user does not know the mechanism of the phenomenon under in-
vestigation either, then the user can make his choice of distribution taking the



A Statistical Agent’s Belief in Gaussian Model 333

following considerations into account:

e The histogram.

We must bear in mind that a histogram can be the resemblance of several
distributions. TFor example, by the histogram it is practically impossible
to differentiate between the lognormal distribution and Weibull’s distribu-
tion, even at a large sample size.

e The graphic representation of the empirical cumulative function on prob-
ability paper.
But there is no quantity criterion for the possible deviation of the values
of the empirical cumulative function from the straight line.

o The sample coefficients of asymmetry and excess.

If for a sample there have been calculated the point estimates of the asym-
metry and of the excess, as well as their mean quadratic deviations, then
we assume that the empirical cumulative function concurs with the the-
oretical one if the sample coefficients of asymmetry and excess differ in
their absolute value from their mathematical expectations no more than
the mean quadratic deviation trebled. '

When making a decision in this manner, the form of the curve is taken
into account. Yet the rule of the three sigmas is an empirical rule.

e The results from the Goodness-of-fit test.

A formal statistical test can be used to test whether the distribution of
the data differs significantly from a Gaussian distribution. However, with
few data points, it is difficult to tell whether the data are Gaussian by
inspection, and the formal test has little power to discriminate between
Gaussian and non-Gaussian distributions.

Besides the main Goodness of fit tests — x? test and Kolmogorov’s test,
there are also others, e.g. Missies-Smirnoff’s test which, unlike the x? test, does
not require combining the numerical values in intervals; in other words it makes
a better use of the information that is contained in the sample. There is also a
test for normality, using a sufficiently big number of small volume samples.

Thus, it is not always easy to decide whether a sample comes from a
Gaussian population. The user remembers that what matters is the distribution
of the overall population, not the distribution of his sample. In deciding whether
a population is normal, he looks at all available data, not just the data in the
current experiment. However, when the scatter comes from the sum of numerous
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sources (with no one source contribution accounting for most of the scatter), the
user expects to find a roughly Gaussian distribution.

When making a decision about the form of the probability distribution
following one or more of the above-discussed ways, the skilled statistician can
conclude, ”I am 99% certain that the distribution of the population under in-
vestigation is normal.” Another user might insist that he is only 80% certain
in the normality of the population distribution. Yet another one realizes that
he cannot define the form of the distribution and he claims that by the same
probability it could be normal or it could as well not be normal. The degree
of certainty of these three users can be represented respectively by the numbers
0.99,0.8,0.5.

Consequently, the agent will make use of a pre-test and a post-test when
making a decision about the normality of the symmetrical continuous popula-
tion.

Usually, as a pre-test there is used a statistical test about the form of
the probability distribution, and after that the user is asked about his opinion.
The results of those two tests are respectively 1 — p, where p is the p-value of
test statistic and the user’s degree of certainty, represented as numbers in the
interval [0,1].

Sometimes, e.g. in regression analysis, the user is first asked if the popu-
lation distribution is normal, then the model is built and afterwards the residuals
from the estimated regression model are tested for normality.

Tt is natural to expect that the high values of the pre-test results will
lead to lower requirements of the post-test results.

3. Model

Let us mark the pre-test results with X and the post-test results with Y.
Let us assume that X and Y are continuous random variables with probability
distribution respectively on Q, = [0,1] and Q, = [0, 1].

By the results of the observations 2 and y, we must make a decision
6 = é(z,y) € D. The function 6(z,y) defined on the set of possible results from
the observations and accepting values in the space D of the possible solutions
is called a decision rule, or a rule for making a decision.

Let T be the agent’s certainty, i.e. a continuous random variable with a
probability distribution on the set Q; = [0,1], and it cannot be observed.

Also suppose that the relation between the random variables X,Y and T'
can be represented by the joint density function f(,y, t). The rule for making
a decision 6(z,y) determines for each possible realization (z,y) of the random
vector (X,Y) which state aj,j = 0,1,2 will be appropriated for the agent’s
belief.
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Let ¢ be the true value of the agent’s certainty and a decision d € D has
been made.

Let us designate with u(d,t) the utility of making a decision d.

If we use the decision rule §(x,y)then the expected utility is U(6/t) =
Eu(é(w,y),1).

The function U(6/t) is called expected utility at the use of the decision
rule §(z,y) on condition that the true value of the agent’s certainty is ¢.

It seems reasonable to choose this rule for making a decision which the
maximum expected utility corresponds to. We are looking for a decision rule,
which is the best in this sense.

For each decision rule § we designate U(8) = [ U(8/t)u(t)dt.

Q¢

The decision rule é* is called Bayes’ if U(6*) = max U(6).

Let us go back to our task of defining the agent’s belief in the normality
of the population under investigation. We shall add a new element al to the
space of the decisions, where the state means that the agent suspects that the
distribution of the population is normal.

Then D = {ao, a1, a2}, where:

ao means that the agent rejects the assumption of the normality of the
distribution which describes the population under investigation;

@, means that the agent suspects that the distribution is normal. In
the process of the statistical analysis it will make use only of tests which are
not sensitive to moderate deviations from the assumption for normality. An
example of such a robust test is the ¢-test;

a, means that the agent is convinced that the distribution is normal. It
will also use statistical tests, which are sensitive even to moderate deviations
from the assumption for normality. Such tests are, for example, Pearson’s,
Fisher’s and Bartlett’s tests for equality of variances.

We shall divide the users’ population into g = 2 subpopulations:

e a subpopulation of the users with statistical expertise which will be called
a subpopulation of the skilled statisticians, and

e a subpopulation of the statisticians-beginners that will be called a sub-
population of the naive statisticians.

We shall also assume that the relation between the measured results from
the pre-test X, the measured results from the post-test Y and the certainty T’
in the subpopulation ¢ can be described by the joint density function.

It is intuitively clear that the high values of the pre-test results lead to
lower requirements of the post-test results. That is, the received preliminary
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information influences the decision rules. Decision rules in which the post-test
decisions are functions of the pre-test results will be called weak rules. The weak
rule for making a decision d can be defined as follows:

{(z,9): 8(2,9) = a0} = Ai X [0,1]
(1) {(z,9):6(2,y) = a1} = A} X Bi(2)
{(z,y) : 6(2,y) = a2} = A7 x B{(2),

where A; and A{ are sets of values of the pre-test leading to the rejection and
to the acceptance of the statement for normality respectively. B;(z) and Bf(z)
are sets of values of the post-test leading respectively to the rejection and to the
acceptance of the statement for normality.

It is natural to consider rules for making a decision, which have a monotonous
form. For example, the agent is convinced that the distribution of the popu-
lation is normal if the value of the variable, representing the certainty, is not
smaller than a fixed in advance threshold value (probability) otherwise the agent
rejects the assumption for normality.

Consequently, the problem for making a dec1sxon about the type of the
probability distribution of the population under consideration is reduced to find-
ing two threshold points (probabilities) . and y. for X and Y respectively which
are optimum with respect to Bayes’ approach, i.e. 4; = [0,z.), B; = [0, y.).

The existence of users with different statistical competence leads to var-
ious values of the threshold points &, and y. which we shall designate with x;
and y,;, respectively. The threshold point ¢; on T is one and the same for each
population of users. It is fixed in advance and known to the agent making a
decision. Usually ¢.=0,95.

Then the weak monotonous rules for making a decision will be defined

as follows:
ap if X <z

(2) 6(z,y)=< a1 if X2>24Y <yei(e)

a; if X2>uo4Y 2 yci(x)a
where aj,j = 0,1,2 are the states of the agent’s belief, 2.7 and y.i are the
threshold points for X and Y in the subpopulation i.

4. Utility structures

A utility function is called the function u;;(¢) which describes the utility
of the result from the appropriation of the state a;,(j = 0,1,2) of the agent’s
belief for a case with a user from subpopulation ¢, in which case the real value
of the agent’s certainty is ¢.
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We shall determine two types of utility functions. Our aim is to define
realistic utility functions. We would like the utility to be changed smoothly from
correct to incorrect decision without jumps in the points close to the threshold
value of agent’s certainty t.. For this purpose we are going to use a continuous
one. A model for making a decision about the type of the population distri-
bution, making use of a linear utility function is described in [7]. It is natural
for us to want the utility function to be limited also in the remote from the .
points, the utility to increase evenly and evenly to decrease to the respective
boundaries.

Consider a utility function which is a continuous limited function of the
true value of the agent’s certainty. The Probit models are suitable for this
purpose. )

In accordance with Berhold’s ideas [1], we define a utility function that
has the following form:

H(poi —t)/o0;] if j=0
(3) uij(t) = ¢ Hl(t—pi)/ou] if j=1
Al(t — pai)/oa) if j=2,

where ¢[.] is the standard Gaussian distribution function, xj; and oj; > 0,7 =
1,2,7=0,1,2, are the mean and the standard deviation of the Gaussian distri-
bution, respectively.

This structure will be called the Gaussian utility structure. The Gaussian
distribution functions are symmetrical with respect to 0.5 in the meanmg that
$(1 + ) — 0.5 = 0.5 — $(u — ).

If we want our utility function to increase smoothly from its lower bound-
ary and to aim quickly at its upper boundary, we shall use the complementary
log-log function 7(z) = 1 — exp(— exp(a + fAz)). It is an asymmetrical function
and when 8 > 0 it aims faster at its upper boundary than at its lower one.

Following this approach we shall use the utility structure with the fol-
lowing form:

1 — exp(—exp(boi(t. —t)) if j=0,
(4) uji(t) =< 1—exp(—exp(bi(t—t:)) if j=1,
1 — exp(—exp(bzi(t —t;)) if j=2,

where b;; > 0,7 = 0,1,2, and ¢, € [0,1] is a fixed number.

The utility function, defined in (4) will be called complementary log-log
utility structure.

The values of bj;,i = 1,2,...,9,5 = 0,1,2 can be different for the different
subpopulations of users. The conditions bp; > 0 and by; > 0 are equivalent to
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the statement that the utility is strictly decreasing in the cases when the agent
rejects the assumption for normality, and it is strictly increasing in the cases
when the agent is convinced that the distribution which describes the population
under investigation is normal.

Since for narrower assumptions about the form of the population distri-
bution are used stronger methods, i.e. stronger results are received from the
statistical analysis, we shall assume that uy;(t) is an increasing function from ¢,
i. e is by >0.

Let us suppose that h is the population of the skilled statisticians and i
is the population of the naive statisticians. It is natural for a naive statistician
to rely more on the opinion and advice of the agent while making the statistical
analysis than a skilled statistician does. Then an incorrect decision will have
worse consequences for the population ¢ than for h. Or, which is almost the
same, the correct decision is more valuable for the population i than for the
population k. That is why we shall choose bj; > bjn,j = 0,2.

5. Sufficient conditions for the monotony of the weak rules

We shall establish the optimum rules for making a decision by maximizing
the expected utility. The limitation to monotonous rules is correct if there are
not non-monotonous rules with bigger expected utility.

In this paragraph the particular form of the utility function is not used.
It is sufficient to assume that it is continuous and bounded.

Let us consider the subpopulation ¢ of the users. We find for rules (1)
the expected utility for a fixed value of i.

Eui(45, BS()) = / / woi(t) wilz, t)dtde
A; O

1

1
+ / /uli(t)'fi(‘c$ y7t)dtdydm+/ / /'U-Zi(t)'fi(z7 y,t)dtdydxa
Biz) 0 A% Bi(z) 0

where w;(z,t) is the joint probability density function of X and T in the 1
subpopulation.

We mark with E;(g(T)/z) the regression function of g(t), where it is
fixed that X = 2. We mark with k;(z,y) the joint probability density function
of X and Y in the i subpopulation. We mark with E;(g(T')/x,y) the regression
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function of g(T'), where X = 2 and Y = y are fixed. Then,

Eui( A5, B(2)) = Ei{uo(T)} + / Ei{[ua(T) — uo(T))/2}.gi(x)dz

+ [ [ EdlnalT) - w(@)/, 9} bt vy
A Bi(z)
We shall represent k;(2,y) = hi(y/2).qi(z). Then

Eui(Af, Bi(z)) = Ei{u(T)}+ / {E{[wa(T) — wo(T))/2}
A¢

(5) + / E{[ua(T) - ua(T)}/ 2, y}hi(y/2)dy} gi(z)da.
B{(z)

Therefore the problem is reduced to the maximizing of (5) for each value
of 1,1 =1,2,...,9.

We find an upper boundary of the expected utility. For this purpose
we make use of almost the obvious statement Suppose that [ |f(z)|dz < oo is
fulfilled for the function f(x). Then for each set of values of x the inequality
f f(z)dz < f f(z)dzholds, where Sp = {z : f(z) > 0}.

From (5) it follows that for each B°(x) when A° is fixed, the following
inequality holds:

Bu(4%B=)) < B{wo(D}+ [{E{u(D) - w(D)/a)

Ac
6) + / E{[ua(T) — w(T))/2, v} h(y/x)dy}.q(z)dz,
Bg(x)
where
(7) Bi(2) = {y : E{[ua(T) - w(T))/z, 4} > O}.

After applying the statement once again, from (6) we get that for each
A° the following inequality holds:

Eu(4% B°(@) < E{uwo(T)} + [ {B{mn(T) - w(D))/}
A5
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+ / E{[ua(T) — wi(T))/2, v} h(y/z)dy}.q(2)dz,
B§(x)

where

AG = {x: E{{ug(T)—uo(T)]/x}+ / E{[ux(T) = wi(T)])/,y}h(y/x)dy > 0},
Bi(x)

(8)
If the function

(9 E{fus(T) - w (1)), v}

from (7) is increasing on y for each 2 and the function

(10)  E{fua(T) - uo(T))/w} + / E{{us(T) = ur(T))/2, y}h(y/2)dy
B§(x)

from (8) is increasing on @ for each y, then the expected utility (see (5)) is
maximized on the sets A = [z.,1] and B§(z) = [yc(), 1], where z. and y.(z)
are the roots respectively of the equations from (8) and (7).

A weaker condition for maximizing (5) on the sets A = [z,1] and
BS(2) = [ye(), 1] is the functions (9) and (10) to change their sign from negative
to positive only once.

Definition. We say that the density function f(t/2) is stochastically
increasing in x, if from x, > z follows that the distribution function satisfies
F(t/zy) < F(t/22), where 1 and 22 are realizations of the random variable X.

Lemma 1. Let T and Z be random variables with realizations t and
z, respectively. For each increasing function k(t) the condilional mathematical
expectation E[k(T)/z) is an increasing function in z if and only if the conditional
density f(t/Z = z) is stochastically increasing in z.

The sufficient condition is proved in [5]. The necessary condition is proved
in [2).

Lemma 2. If the conditional density v(t/x,y) of T on condition that
X = 2 and Y = y is stochastically increasing in = and y, and the conditional
density h(y/z) of Y on condition that X = x is stochastically increasing in z,
1
then the marginal conditional density p(t/z) = [ v(t/z,y).h(y/x)dy is stochas-
0
tically increasing in .
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Lemma 3. If the function k(z,y) is strictly increasing on x and y,
then the dependence of y on x defined by means of (z,y) : k(z,y) =c,c € R is
a decreasing function on .

Lemma 2 and Lemma 3 are proved in [10].

Theorem. Let the following conditions hold:
11) The functions u;(t) — u;—1(1),7 = 1,2 are strictly increasing in t.
J J

(12) The conditional distribution function V(t/z,y) is strictly decreasing in ©
and y for each t.

(18) The conditional distribution function H(y/z) is strictly decreasing in x
for each y.

Then the optimum weak rule for making a decision for normality of the proba-
bility distribution of the population being investigated is monotonous.

For the special case when the utility function has a linear form, the
theorem is proved in [10]. We are going to prove it by analogy for a continuous
and bounded utility function.

Proof. From conditions (11) and (12), and Lemma 1, it follows that
E{[uz(T) — u1(T)]/x,y} is increasing in y for-each 2 and it is increasing in @
for each y. Therefore, the set B§(z) takes the form [y.(x), 1] for all values of x.
From theorem’s conditions, Lemma 1 and Lemma 2, it follows that E{[u(T") —
uo(T)]/x} is an increasing function in the point . E{[u(T) — wi(T)]/x,y} is
increasing on z and y, and is non-negative when y > y.(z) for each z (see (7)),
and h(y/z) > 0.

Let 22 > x1. Then from Lemma 3 it follows that

1
/ E{[ua(T) — w1(T))/22, y}(y/2)dy
ye(z2)
1
- / E{[uz(T) — w1(T)]/21, y}h(y/21)dy

ve(w1)
1
> [ B - a2 /)y

ye(21)
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1
= [ Bl - e (@) /er, }w )y
ye(x1)
1
> [ Bl - (@) s/ e)dy
ye(z1)
1
= [ Bl ~ w1, 0} b/ 1)dy

ye(z1)

1
= /I[yc(zl),n(y)-E{[uz(T) — uy(T)]/21, y}-[M(y/22) — h(y/=1)]ldy > 0,

where Ijy, (z),1) is the indicator of the set [y.(z),1]. We used the fact that the
density h(y/z) is stochastically increasing in z (see (13)).

Hence
1
B({u(T) - (D)} + [ B{{ua(T) = ex(T))/=,v}h(u/w)dy
ye(z)

is an increasing function. Therefore, the set AS takes the form [a,1].
The theorem is proved. ™

Consider the Gaussian utility structure. Then

{ o—t
) - o)

un(1) - uo(t) = (-

and

“‘)+ (—"°‘t)>o

Sun(0) - uo(®)] = - o

Vt € [0, 1], where we have designated the density functlon of the standard normal
distribution with ¢(.). Then,

t—m
g1 )

ua(t) = (1) = p(TE2) —

and

Sl - ()] = (22 - L=,

dt 2 o1 oy
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The roots of the equality

1 (t—p,)? L )2
%6 2:5(‘ H2) _ —12-6 23?’(‘ 1) =0
T2 a1
are
o — 052 pe - \/(ﬁ‘—;ﬁz)2 + (02 —o?)(Inoy —Inoy)
b= o—2 _ g-2
1 2
and
| _ ot ort V(85222 + (2 - 03)(In oy — In o)
2= "1—.2 - 02'2 ’

Then the following four corollaries hold.

Corollary 1. For the Gaussian utility structure (3), where o3; > o1; >
0, = 1,2, the optimum weak rule for making a decision for the normality of the
probability distribution is monotonous if:

e 1<ty orty; <0, where

o7 — o3 pg — \/(“ﬂ%&)2 + (062 -~ o?)(Inoy — Inoy)

11 =
=2 =2
gy — 0y

and

oy — oo + \/(m%&z)z + (62 - o?)(Inoz —Inoy)

ity =
-2 —2 ’
g — 0y

o the conditional distribution function V(t/x,y) is strictly decreasing in z
and y for each t.

o the conditional distribution function H(y/x) is strictly decreasing in x for
each y.

"Corollary 2. For the Gaussian utility structure (3), where oy; > o9; >
0,¢ = 1,2, the optimum weak rule for making a decision for the normality of the
probability distribution is monotonous if:

e 1, <0< 1<ty where

o7 — o5 %pg - \/(’ﬁl-;-’ﬂ-)2 + (02 —o?)(Inog —Inoy)

t =
—2 —2 ’
0y — 0y
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ot = o7 + (B2 + (0] - oD (noy —nay)

iy =
—2 -2 )
O T 0y

o the conditional distribution function V(t/xz,y) is strictly decreasing in
and y for each t.

e the conditional distribution function H(y/x) is strictly decreasing in x for
each y.

Corollary 3. For the Gaussian utility structure (3), where o1; =
02:,i = 1,2, the optimum weak rule for making a decision for the normality of
the probability distribution is monotonous if:

o Ly; < po; and “J-'—;‘ﬂl < 0, or py; > po; and E‘-’%&*— > 1, wherei = 1,2,

"o the conditional distribution function V(t/z,y) is strictly decreasing in z
and y for each t,

e the conditional distribution function H(y/z) is strictly decreasing in x for
each y. '

Corollary 4. For the complementary log-log utility structure (4) the
optimum weak rule for making a decision for the normality of the probability
distribution is monotonous if:

4 b2i > bli)

e the conditional distribution function V(t/x,y) is strictly decreasing in x
and y for each t.

o the conditional distribution function H(y/z) is strictly decreasing in x for
each y.

It is natural for the utility function to take on bigger values when the
agent is certain that the distribution of the population under investigation is
normal, unlike the cases when the agent suspects that the distribution is normal.
Hence, the condition bg; > by; is a natural assumption.

The proof of Corollary 4 follows directly from the fact that when by; > by;
the function u(t) — uy(t) changes its sign from negative to positive exactly
once in the interval [0,1] as well as from the properties of the mathematical
expectation.
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Let us now, summarize the result obtained:

The sets B§(z) and A§ are defined as follows: First, for all values of z,
the sets B§(z) are defined by means of (7). Then the set A is defined by means
of (8). Hence the optimum weak rules must be calculated in this order.

6. Conclusions

In this paper an approach to modeling of the belief of a statistical agent
in the normality of the probability distribution of the population under inves-
tigation and an approach to optimizing decision rules determining the states of
agent’s belief are presented.

Further work on agent’s belief will be published in [8]. The agent’s belief
in the probability model is presented via three items (B, D, U). B is a Bayesian
network, presenting the probability structure of the agent’s belief problem, D
is a decision network of the agent’s belief state, and I is a utility network,
presenting the utility structure of the agent’s belief problem. The decision for
the agent’s belief state can be made via propagation in D. The agent’s belief
state can be optimized via propagation in I, using at the same time B.

These approaches will be applied in a Multi-agent system for statistical
hypotheses testing.
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