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1. Introduction

Let D be a bounded domain in the space R':"'l of points :c"= (Z1y. - -
Zm—1), where m > 2 is an integer. Let G = {z = (z ,2m) ER™: 2 € D,0<
Zm <h}, S={reR™: 2’ € dD,0< xm < h},h = const, S € C.

We consider the operator

m-—1 m
Lu = E aij (%) Uiz, + K(2)Ugpmzm + Zb.-(a:)u,,. + e(z)u — u|u|? — f(z,u),
i,j=1 i=1
m-—1 m-—1
where a;; € C2(§), a;; = aji fori,j=1,...,m—1; Z a;;j(x)&€; > ao Z 6;2,
tJ=1 =1

Vz € G and V€' € R™"1, ao = const > 0; k € C*(G), k(z',0) = k(z',h) =
0 Vz' € D; ¢,b; € CY(G) for i = 1,...,m; p = const > 0. The function f(z,1)

* This research is partially supported by the Ministry of Education and
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is defined in G'x R and f € CAR, i.e. f(x,t) is continuous with respect to ¢
for almost every @ € G and it is measurable with respect to 2 in GG for every
t € R (see [5], 12.2). All the functions in this paper are real-valued.
The operator £ is elliptic, hyperbolic, parabolic at a point & € G, if
k(z) > 0, k(z) < 0, k(z) = O respectively. In our case £ is an operator of
mixed type in G, because there are no restrictions on the sign of £(z) for x € G.
We consider the following boundary value problem:

Find a function u(z) in G such that

(1) Lv=0in G,
(2) u=0onS, u(a',h) = Au(z",0) in D,
where A # 0 is a given real constant.

A nonlocal problem for the linear equation

m-—1 m
Lu= Y a;j(2)uzia; + k(@) tomam + I bi(@)s, + e(2)u = f(2),
i,7=1 i=1

where k(z',0) = k(z',h) = 0 Vz' € D, with the boundary conditions (2) is
investigated in [4] for 0 < A < 1,in [7, 8] for 0 < [A] < 1, in [9] for A # 0. This
problem is investigated also in [17] in the case where —1 < A < 1, q;j(z) =
81, &} is the Kronecker’s symbol, b; = 0, #,j = 1,...,m -1, k = k(zn) and
k(h) > 0 > k(0).

Nonlocal boundary value problems for different nonlinear equations of
second order of mixed type are considered in [4], [6].

Let Z = W}(G)N L,42(G) be the linear normed space with a norm

(3) lull = (lulidyy gy + Ml a0

where llollz,@ = (f ol 2’7, 1< v < oo, and lullwyoy = [ (42 +
G G

m

Zu;‘:i)dm]l/ 2 are the norms in L,(G) and in the Sobolev space W3(G), re-
i=1

spectively. Let X be the closure in the norm (3) of the set C? = {u €
C?*(G) : u satisfies (2)} and let Y be the closure in the norm (3) of the set
of all functions belonging to C?(G) and vanishing on S. In the sequel we
suppose that f(z,u(z)) € La(G) Vu € L,42(G) and that for some constants
Fy >0, F; >0, 0 > 1 the inequality
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B 17 Wl < B+ Bl

holds for every u € L,42(G). It is not difficult to establish (4), using 12.4 and
12.11 from [5] and the imbedding L2s(G) — L3(G) (see [1]), if for example
k € Lyy(G) and Fy = const > 0 exist such that |f(2,t)| < k(x) + Fylt|(rt2)/20
for almost every € G and for every ¢t € R.. Since u|u|? € L, (G) for u € L,42(G)
with 7 = (p+ 2)/(p + 1) where p > 0, then for u, v € Z we denote

m—1
Blu,v] = — /G[(k"’)zm“xm + Z (a,-jv)zju,,,.] da

i,j=1

(5) + /G[Z biug;, + cu — u|u|? — f(z,u)]vdz.

=1

Definition. A function u(z) is called a generalized solution of problem
(1), (2),if v € X and
(6) Blu,v]=0 Vv €Y.

The main result in this paper is the following theorem.

Theorem 1. Let k(a:',:vm) >0 for ' € D and hy < 2, < h where
hy = const, 0 < hy < h; a,-j(:v',h) = (lij(fl?l,O) inD, i,j=1,...,m—1; c¢(z) =
—M+g(z), where M = const > 0 and g(x) does not depend on M; 2b,,—k,,,, > 0
in Go = {z € G: k(z) = 0}; and (4) be satisfied. Then a positive constant M
exists such that problem (1), (2) has a generalized solution for every M > M.

Sections 2 and 3 of this paper contain some preliminary results. The
proof of Theorem 1 is given in Section 4. It consists of three steps: 1) using the
Faedo - Galerkin method we construct a sequence belonging to the Banach space
X, which sequence is bounded in the norm (3); 2) that implies the existence of
a subsequence weakly convergent in X to a function v € X; 3) taking a limit in
some integral equalities for this subsequence, we obtain (6).

Similar schemes of proofs are used for local boundary-value problems for
quasilinear equations of mixed type in [2, 3, 15], for a nonlinear degenerating
hyperbolic equation in [16], for quasilinear hyperbolic - parabolic equations in
[12, 14] and others.

Some of the results of the present paper are published without proofs in

[10].
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2. Preliminary results

Lemma 1. i) Z is a Banach, separable and reflexive space.
ii) The spaces X and Y with the norm (3) are Banach, separable and

reflezive.

Proof. i) The spaces W}(G) and L,,+2(G) are Banach ones and
L,42(G) — L3(G) for p > 0 (see [1]). Then Z also is a Banach space. Let
V = {'U) B (wOs wy, . awmvw1n+l) wj € L2(G)’ ] = 0 1 cy My, W41 €
L,+2(G)}. Then |4 is a separable and reflexive Banach space with a norm

lwllv = (Z"wJHLz(G) + lwmsall}, ;)2 ([1], 1.22). From the imbedding

Ly42(G) ._., Lg(G) for p > 0 and the definition of a generalized derivative
(see [1]) it follows that the space V = {(v,z;,.++s0z,,,0) ¢ v € Z} is a
closed subspace of V. Therefore V is a separable and reflexive Banach space
under the norm ||.|lv ([1], 1.21). Let consider the linear one-to-one mapping
M : Z — V such that Mv = (v,Vz,,...,Vz,,,v) Yv € Z. From (3) it follows
[[Mo]ly = ||v|| Yv € Z. Hence Z is a sepa.ra.ble and reflexive space.

ii) The proof is a consequence of i) and the fact that X and Y are closed

subspaces of Z. ]

Lemma 2. 4 countable linearly independent set R, consisting of func-
tions from C2(G) vanishing on S, ezists such that its linear span is dense in Y.

Proof. Let the set {v;}32; C Y be dense in Y. Let &y, > 0 Vn € N
and e, — 0. For j,n € N a function @;, € C*(G), @jnls = 0, exists such that
[lv; — @jnll < €n. Let v € Y and 6 > 0. We take ¢,, < & and vj, with the
properties jﬁané' € N, [lv—vjll < 2 Then [|v — @jgnsll < llv = vjgll + llvss —
Pisnsll < % + €ns < 6. Arranging the countable set {(;n}$5,=; in a sequence

P1, P2,.. we see that it is dense in Y and 9; € C*(G), v;|ls =0Vj € N.
: Let now ®; be the first element of the sequence {1;}32, which is not equal
to zero in G. Let ®; be the next element of {¢j}‘;?_.1 such that ®; and ®, are
linearly independent in G. Let ®3 be the next element of {1;}32, such that &, ,
&, and &3 are linearly independent in G and so on. Theset R = {&,, ®2, ®3,...}
is the needed because: 1) ®; € C*(G), ®;|s = 0 Vj € N, 2) R is an infinite,
countable, linearly independant set, 3) the linear span of R is densein Y. =

Lemma 3. ([13], Ch. 1, Lemma 1.3) If {w,}?2, is a bounded sequence
in Ly(G), 1 < < 400, w € Ly(G) and w, — w almost everywhere in G, then
w, — w weakly in L,(G).
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Lemma 4. Let uy,ug,...,un, € C2, ¢ € C¥G), ¢|ls = 0. Let

n

r=1

0
{77}, € R™ be convergent to ¥ € R™ in the norm |7| = [2(7,)2]1/2
s=1

where ¥ = (71,.--,7n). Then,

(7) B[Y_ viues ¢] — BIY_ 7ous, ¢l

s=1 s=1

n
Proof. We set w,.(2) = Z'y;u_,(m) for r € NJ{0} and = %—1—?,

=1
where p > 0. Using the Minkowsk; and Hélder inequalities we obtain

n
llwrlwel?llzg@) = oz, < QO Mallltallzoya@)**

s=1
<al|7 Pt < e, VreN,
because the convergent sequence {?r},‘?gl is bounded. Here ¢, and c3 are pos-
itive constants nondepending on r € N. Clearly w,(2) — wo(z) V& € G. Then
Lemma 3 implies '

(8) wrlwr|”r-:;° wo|wg|? weakly in L,(G).

The Minkowski inequality and the boundness of the sequence {"’Tr}ﬁ‘;,,
from (4), are used to get || f(z,wr)||7,g) < ¢s Vr € N. Since 1 <7 < 2, it
follows that ||f(z,wr)||L,() < €a Vr € N, where ¢4 = const > 0 does not
depend on r € N. The property f € CAR implies f(z,w.(2)) - f(z,wo(2))
for almost every = € G. Then, inview of Lemma 3, "

9 f(z,we(2)) — f(z,wo(z)) weakly in Ly(G).

ow, _, 9
The convergences (8) and (9) and the fact that w, — wo, a—::' ends 'c';:_(-)
% )

in Ly(G), i=1,...,m, imply (7). ]
We denote P(zm) = (22, — 2ham + 6) exp(—vh), where v = const > 0 is

such that
(10) min(A?, l/\|p+2) > exp(—vh)

and the constant & satisfies the inequalities

(1) minfa(|A"*?), a(A2)] > 6 > h?
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with a(y) = h%y(y — exp(—rh))~1,y # exp(—vh). Let p = const > 0, P €
Cz(C_v')_,_z,b(a:) = 0 for 2 € GoUG- and ¢(x) > 0 for € G4, where G} =
{z € G: k(z) >0}, G- = {2 € G: k(z) < 0}. We denote p(zm) =

P(xm) exp(vem), q(z) = —pp(x) exp(va,y,) and l(u) = p(q,m)a + q(2)u.

Lemma 5. Let v > 0 satisfying (10) be fized and k(z',xm) > 0 for
' € D and hy < @y < h, where 0 < hy < h. Let p > 7’;\;, if A > 1, where

Ho = min / (z',1) dt. Then for every ¢ € C*G), which vanishes on S,
z'€D Jhy P(t)

there exists a unique function u, € C? such that

7]
I(uy) = pa—:—: +quy=¢ inG.

Remark . Obviously P(z,,) = (6 — h?)exp(—vh) > 0 Vz,,. Hence
Hgp > 0.
Proof. Under our assumptions for i we get for every ' €D

h /

=} exp(/ %‘”n’t) dt) > —\ +exp(uHo) > —A + 1 + pHo > 0.
o

Then one can verify that the function

N o pp(a', 1)
uq,(a:,:vm)_{/ ’P(0)exp(u0) p(/ Pl drydo

(@0 ph('1)
[/ P0) oxp(18) © "(/ P WA

+exp( / “";ﬁft)‘) a e[ D)

possesses the needed properties. Let uy, i, be two functions with these prop-
erties and U = u, — Ty Then U € C? and {(U) = 0 in G, i.e. for fixed
z €D

ou m/)(a: a:m) . N 3
a-77m P(zm) = 0, 0<am < h’ U(:l: ’h) - /\U(:L ’0)'

Solving this nonlocal problem we find

Uz, zm) = C(z) exp( /0 = ’i’%—t—)dt), 0<am<h,
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where the constant C(z') satisfies

h o, :
Cz[-A+ exp(/0 &,’g(wt—iﬂ dt)] = 0.

Hence C(2') = 0 and u, = i, in G. =
3. An a-priori estimate

Lemma 6. Let the assumptions of Theorem 1 hold. Then, with the
notations introduced before in Lemma 5, constants v > 0 and p > 0 satisfying
the conditions of Lemma 5 exist such that the a-priory estimate

(12) Blu, ()] 2 Bullulllyyq) + Ballull??, ) = Bs
takes place Vu € C? and VM > M (v, p), where By, B2, B3 are positive constants

nondepending on u.

Proof. Taking v = I(u) in (5) for v € C? and integrating by parts in
Blu,l(u)], we get

Blu (W] = [ [0 = ko + b, da

m—1 m—1
- /kau:cma:m“zm dz + Lpuwm Z(_ Z Qijz;

=1 i=1

m=1

+b;)uz, dx — / P E iUz, Uz T

=1

m—1
_/Gq Z QiU Ugj dT — /G(M — g)qut dz

i,j=1
(13) + [ 1ot = (ka)ew = (M = )l
m-—1 m—1
+/ qu Z(b,’ - Z a;j;,;..)uzj dx
G =1 =1

m-—1
—/ u Z @iz, Us; da:—/ qlu|Pt? dz
G G

1,)=1



354 M. G. Karatopraklieva

12

- [ plubuts, da = [ f@0)ouen, + w)de = 3 1
G G

s=1

Integrating by parts and using (2), (10) and (11) we have

m=—1
I, = %/D Z a,-j(a:’,O)tzx,.(w',O)uxj(w',0)[1)(0) - z\zp(h)] da’

i,y=1
1 m-—1 1 m—1
+5/ Z (@i5P)zm Uz Uz; d2 2 5/ z (aijp)rm“zi"a:j dz,
Gij=1 G =1

I, = —1-/ (kp)z,ut_ de.
2)e "

The zeroes of Q(t) = t24+2(1 —h)t+6—2 aret; = h—l—v/Dandt; = h—
1+VD, where D = +h?-6. Let 7 = max[z5y5 ey, — 3 In(min(A%, [A[+2))]
and v > 7. Then (10) holds and from (11) it follows

(14) h? < 6 < h2A%(\? — exp(—vh))~1.

Since exp(vh) > 1+ vh+2"1w2h? +6-13h3, then A2 exp(vh)—1 > v2h?. Hence
h2A2(A2 — exp(—vh))~! < h? + v~2 and from (14) follows that 0 < D < »~2,
Thus hy <h—2<t; <tz <h Vv> . Since Q(h) = 6§ — h% > 0, then

vP(t) + P'(t) = vexp(—rh)Q(t) < 0 for t; <t < t; and v > V.

Therefore for every v > v a constant ji(») > 0 exists with the property P (zm) -
2¢(z) > 0in G Vu > a(v).

In the same way as in the proof of Theorem 1 in [9], we show that for
gsome 7 = const > 0 and for arbitrary fixed » > U a constant ji(v¥) > 0 can be
found such that for every pu > fi(v)

5 m-—1
(15) EI, > / p(é1ul  + & Z ul)de ,
s=1 G i=1

where & = é(p,v) > 0, & = &(v) > 0. _ B
Since k(z',0) = k(z',h) = 0 in D, then g(z',0) = ¢(z',h) = 0 in D.
Integrating by parts and using (2), we obtain

fr= 3 [ = 90 bng + (ka)enlemi e+ 5 [ (1(0)
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~A2p(h)IM + [/\2])(h)g(m' h) — p(O)g(a:' 0)]}u2(a:' 0)da’,

= —-/ E(qb . Z ijz;q)z; A2,
/ Z(au‘h,)m, de.

1,y=1

We fix v > max(#, 7) and p > max(fi(v), fi(v)). Then a constant M(v,pu) > 0
exists such that :

9
1 / -
>0 = M [ - 2anas+ [ o)

(16) —Azp(h)]u2(a:',0) d:v'} +1I> 53/ pu® dz
G

VM > M(v,p), where & = &3(p, v, M) > 0. Let us note that in (16) the term I

does not depend on M.
Further, using (2), (10) and (11) we find

___ P+2Y o — L "o 10+2 o
Ii= ,,+2/Pax (0¥ de = ——{ [ p'luir*? dos

+ / lu(z’, 0)1+2[p(0) — |AP*?p(h)] da'} > —— / 2 [ulP*? da.
D p+2Jc

Obviously p'(zm) — (p + 2)a(z) 2 P (2m) —2¢(2) in G. Then for v > max(7, 7)
and p > max(ji(v), fi(v)) the estimate

(17) Lo+ 1 2 54/ |ul?+? de
G

holds with é; = éq(p,v) > 0.

Using the Holder mequahty, the inequality |ab| < £|a|” + -rsT'|b|f with
€>0,a,beR, r>1, 14 ;_-r = 1, and the inequality (4), we obtain

05F2) _1_ -
d 2

/ 1 (@, )| (|pam] + lgul) do < (

(18) B0 o [ s s g [, vty
€1 g Jag G
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where €1 > 0, €2 > 0, -7 + = L =1, é > 0 depends only on p and ¢.

Thus for v > mau\(u, ), p > max(fi(v), fi(v)) and M > M(v,p) from
(13) and (15) - (18), with &1, & sufficiently small, it follows the estimate (12).
[

4., Proof of Theorem 1

Lemma 5 implies the existence of a function u; € C? such that
_, 0y
(19) l(uj) = pa L4 qu; = ®; in G

for j = 1,2,..., where the set {<I>j}]°~‘;1 = R is given in Lemma 2. We consider
the nonlinear algebraic system

n
(20) B> vrur, ®]=0,i=1,2,...,n

r=1

where the real constants ¥1,...,7, are unknown. Let

n
(21) WA = 11D prurllz o)

r=1

n n
where 7 = (71,...,7n). We have I(E Yolle ) = Z‘y,@, in view of (19). Since
r= =1
R is a linearly independent set, then 71111(a:)+ .. .r+ Ynttn(2) = 0 in G if and only
if 1 =92 =...=7n = 0. One can verify that (21) is a norm in R". Then for
some positive constants Ny and Ny the inequalities N1| 7| < || 7]l £ No| 7|
hold V¥ € R™, where the notation |.| is given in Lemma 4. These inequalities,
(12) and (21) imply

n n
(22) B vun, i} veur)] 20VF €R™: |72 Ky
r=1 r=1

with K, = N;Y(BaB7 ")V (P12,
Let consider the operator A : R® — R" such that

A(?) = (B[Z Yrllr, Ql]’ ceey B[Z VYrllr, q’n])-

r=1 r=1
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Using the linearity of B[u,v] with respect to v and (22), we get the estimate
(A(7), 7)20VY €R": |T| 2 K,

where (., .) is the scalar product in R" generating the norm |.|. Lemma 4 shows
that the operator A is continuous. Then Lemma 4.3, Ch. 1, [13] implies the
existence of a vector 77"" € R™ such that |_7"'"| < K, and A(‘—?") = 0. Hence
n
3" is a solution of the system (20).
n
Setting U,, = Z‘y,’.‘ur we have U, € C? and

r=1
0= B[Un, ®]y} = B[Us, {(Un)] Vn € N.
=1

Then (12) gives ﬂann"%vg(G) + ﬂ2”Uﬂ”Z-::2(G) < B3 Vn € N. Therefore the
following estimates

I} B
(23) 10allwy (@) < (G2 WUnllzpra@) < (G er,
and
(24) 10all < (22 + (B2yprovapr = g,
£ B

hold Vn € N. The set {v € X : ||v]| < B4} is a closed, bounded and convex
subset of the reflexive Banach space X (see Lemma 1, ii)). Then it is weakly
closed ([5], 25.2) and hence, it is weakly compact in X ([5], 24.8 and 25.6).
Therefore the inequality (24) implies the existence of a subsequence {Un}324
weakly convergent in X to w € X. Our aim is to show that u is a generalized

solution of problem (1), (2)-
Let consider the linear continuous functional

Fp(v) = (v, Vv € W3(G),

where (., .); is the scalar product in W}(G), generating the norm ||.lw;(q),
and ¢ € W}(G) is arbitrary and fixed. If v € X, then v € W3}(G) and the
inequalities

1Fo(0)] < llollwp @ llellwg @) < lolllleliwge) Vo € X

) =00

weakly in W3(G) ([1], Riesz representation theorem 1.11). That is equivalent

imply that F, € X*. Hence fv(Un,')j:;oftp(“) Vo € W)(G), ie. Uy o
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oU,; .

to Up, — uwand —= i weakly in L2(G), i = 1,...,m (see [11],Ch. 1,
o T T

5).

The first inequality of (23) and Rellich - Kondrashov imbedding theorem
(see [1]) show that the subsequence {Uy;}32, can be choosen also convergent to
u strongly in Ly(G). Then a subsequence {U,; }22, exists, which is convergent
to u almost everywhere in G' and which is bounded in L,42(G) due to (23).
Since for n = (p+2)/(p+ 1)

"”|"|p"Lq(G) “””2+_:,(G) Vv € Lyt2(G),

then Lemma 3 implies that Uy, |Un; |? — ul|u|® weakly in L,(G). Using the
inequalities 1 < 7 < 2, (4) and the second one of (23), we obtain the estimate

£ (2, Un;, llLye) < arlFr + F2||Un,-,|l(,j’;§)/0]1/z < e

Vr € N, where ¢;, ¢ are positive constants, nondepending on {Unjr}ﬁ?__l. We
have f(z,Uy, (¢)) — f(z,u()) almost everywhere in G, because f € CAR.

Due to Lemma 3 this convergence is also weak in L,(G).
Therefore B[U,,, , ,] — B[u, ®;] Vi € N and then Bfu, ®;] = 0Vi € N.
It is not difficult to obtain the estimate

Blw,v] < (esllwl| + [|f(2, W)l @)lloll Yw,v € Z,
where ¢3 = const > 0 is nondepending on w and v. Since B[w,v] is a linear

form with respect to v and the linear span of {®;}$2, is dense in Y, according
to Lemma 2, then (6) holds. Theorem 1 is proved. (]
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