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We study smooth non-negative solutions of the equation u; = d;a; (4, Vu) + ao(u, Vu)
in the strip S = R x (0,T), d > 1. A regularizing eflect, pointwise estimates and gradi-
ent estimates are obtained. Applications to the regularized degenerated nonlinear parabolic
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1. Introduction

,\Vw p

|l

The equation we will base on in this paper and which we will refer to
below as ”double powered”, is
p=2 r w
1.1 wy = 0; w| 9w +(——1)———
( ) t J ( I I J ) P le,\
for \,re R, p> 1.

This nonlinear degenerate or singular parabolic equation appears in dif-
ferent physical settings where the solution of the corresponding problem is nat-
urally nonnegative. Its properties, appriory estimates, quantitative eflects are
matter of study in many works, see the survey of Kalashnikov [12].

1 < i
Replacing —|¢|” by @(q) - nonnegative convex function in R?, and |s|" by

¢(s) nonnegative function, we transform (1.1) into two parameters’ equation
(1.2)
; Vw wo_ Vw w Vw
= wo;a’ s k——o ( —) - Ad a —
w = woia? (o) T2) + ks (o) o () 22),
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where @(q) = %&(q), a1(q) = ¢;@’(¢) — a(q) and k,A € R. In the p-

j
homogeneous case of (1.1) since @; = (p—1)a, the parameters k, A are connected
by the relation k£ = r + A(p — 1)d.

To a more general form equation
(1.3) uy = 9ja;(u, Vu) + ao(u, Vu),

that we will deal with in a part of this paper, we can come in different ways.
For instance, if w from (1.2) is a positive sufficiently smooth function then the
change w = e* leads to (1.3) with aj(u,q) = @ (n(u)q), n(u) = ¢(e*) and
corresponding ao. Note also that since in (1.3) with a;(u,q) need not to be
a gradient of a convex function «(u,q), the equation (1.3) includes the case of
”polytropical filtration”, see [12].

Let us look at the equation (1.2) with ¢(w) = |w|*. Denote by 8(s)
the Young conjugate of @(¢) and by [s]4+ = max(s,0). Then the nonnegative
continuous functions

(1.4) B\ k) = [C" (1 + ké)_% — Akt +7)8 (:t—+m:)} X
| +

with the standard changes for £ = 0 or (and) A = 0, are Barenblatt-type solu-
tions of (1.2). The B’s with ”+” are such in a weak (integral) sence. In (1.4)

C > 0, T are constants (7 > 0 for A < 0) and since (1 + k% must be posi-

tive some of the solutions are defined only for ¢ € [0,T), for some T = T'(, k).
These solutions illustrate typical for nonlinear parabolic equations effects like
finite speed of propagation (A > 0), finite blow-up time (A > 0, £ > 0), finite
time of extinction (k < 0).

However in this study we will point out some other, obviously nonisolated
from these above-mentioned properties of the solutions, which we will discuss
as follows:

(i) By the "regularizing effect” for a solution u of the equation (1.3) we
mean an inequality of the form

uy — b(u, Vu) = 8a;(u, Vu) + c(u, Vu) 2 (<) f(2),

where c is a part of ag, i.e. b+ ¢ = ag. It includes of course an estimate of u;
(when ¢ = ap) also known as ”regularizing effect”. Such "definition” may be
generalized admitting « and Vu as arguments of the right hand side function f.
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An example of such an inequality gives the smooth Barenblatt-type solutions of
(1.2) with powered ¢, satisfying

vV B V(0. 2
W(t,x)zajaj( i )— d W0, 2)

Tkttt 1- Bw(0,2)

So, for instance, if W(0,2) > —wo(< wo), wo > 0 and k& > 0(< 0), then
——l L.
1+ Stwo kt’

wo d ’
Wtae) —5— < gy t>0
( ( :L) 1—§tw0 'klt’ )

Wi(t,z) > > — t>0,

(1.5)

and it remains true for the weak B — solutions, but in sence of D’. Is such an
estimate valuable for a class of solutions of the Cauchy problem for the equation
(1.2), is a question that we will try particularly to answer.

There were steps in this path as in the porous medium case and its gener-
alizations, see for example Aronson, Benilan [1], Crandall, Pierre [3], Dahlberg,
Kenig [4], Di Benedetto [5], and Fabricant, Marinov, Rangelov [9], so in the one
dimensional double powered equation, see Esteban, Vazquez [6].

The regularizing effect for w; is known for roughly speaking abstract
Cauchy problems w; = Aw with homogeneous operator A, see Benilan, Crandall
[2], Evans [8] and Kalashnikov [12].

(ii) A non-popular but essential in our look consequence of the regular-

. . 1 .
izing effect is the pointwise estimate. For v = XB'\ in the double powered case

and k£ > 0, r > 0 it becomes

(45 _ 5\ g ==
(1.6)  s%(s,z) <t*w(t,y)+k (t s ) 6 (“k @ 35)) y 0<s<t<T,
~ 1 1 1
wherea:%, 6=£, 0(0’)=P|a|”, ;-{-;:1,

The analogue of this estimate for A = 0 corresponds to the classical
result of Mozer for the linear case, see Mozer [14], and may be seen as a more
detailed Harnak type inequality. The capacities of (1.6) are shown in Fabricant,
Marinov, Rangelov [10], where it leads to L> — L!, the interface and the initial

trace estimates.

In the one-dimensional double powered Cauchy problem the boundness of
the derivative with respect to z for bounded u was proved in Esteban, Vazquez
[5] by Berstein method. We will show that this is an immediate product of the

regularizing effect.
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(iii) Let w is a smooth positive solution of (1.2) in S7 and z(t,2) =

go(lw)ﬁl ((p(w)%g), 2(t) = sup,epa 2(t,2). If w is Barenblatt-type solution,
then
2(0)

. L —

(&) #42) £ T3 ke2(0)
1
. . M T . _ Nk < 0.

for t < min(7,T*), T V)] if Ak > 0, and T oo if Ak < 0. The

example shows that 7 is the exact blow-up moment.

Since our aim is to demonstrate the properties cited above for more
general equations and to discuss the methods and the variants, we do not trace
the limiting process for the original equation (1.1). However we will say a few

words about the possible appproximation. Some authors use (|q|2 - t~:)g as a
regularization of |¢|? and base the proof on Theorem 4.1, Ch. 6 in Ladyzenskaja,
Solonnikov, Ural’tzeva [13]. But in the case when the coefficients depend on w
these theorems suggest hard structural conditions, non-satisfied by the equation
even after a change of the variables. So we tie ourselves down to Theorem 8.1,
Ch. 5 of [13] and withdraw as from the degeneration, so from the singularity.
The approximation proposed in Section 6 for the equation (1.1) reserves the
needed estimates.

The plan of the exposition is: In Section 2 we derive the equations sat-
isfied by quantities like W and z and through algebraic inequalities come to
differential inequalities for them. In Section 3 we cite theorems from [13] which
give existence and sufficient smoothness of the solutions and prove some com-
parision results for differential inequalities.

In Sections 4 and 5 we apply all this to the more special case of equation
(1.2) and get the basic theorems and corollaries.

2. Preliminaries, differential inequalities

The purpose of this section is to study some a priori differential inequal-
ities for appropriate expressions of the first and second derivatives with respect
to z and first derivative with respect to ¢ for smooth solutions of the equation
(2.1) uy = 8;aj(u, Vu) + ao(u, Vu)

0
in the strip S7 = R? x[0,T), d > 1. Here we shall use the notations: 9; = 5o
Tj

; 0 . 9
wj = Oju and fi(u,0) = G f(0a)s 5= Lovrds [2w0) = o f(usg) as or

j
functions or vector functions f so for matrices f. Suppose that:
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Functions a;(u,q),ao(u, q) have continuous derivatives up to the second
order with respect to u,q.

(2.2) Function u(t,x) is a solution of the equation (2.1) such that: u(t, )

has 4 continuous derivatives with respect to x and w,(t, ) has 2
continuous derivatives with respect to .

Denote by Lf = f; — (')jafak f=(a2+ a{;)aj f the parabolic differential operator
and e; = abub® — a%(wd' — b), eo = (ahus — ag)b® — ad(wb! — b), where b is an
arbitrary smooth function of v and Vu.

The next lemma holds:

Lemma 2.1. Let the coefficients a;, ao and the solution u(t,x) of the
equation (2.1) are as in (2.2). Then the next equalities take places:

(i) Let W = 0ja; + ¢, ¢=ag—b, then

(2.3) LW = (9xa;)(9;0%) + Wj;al + 9je; + eg + ®W + c%.
(ii) Function u; satisfies

(2.4) L(u;) = uy(9;a9 + a°).
(iii) For arbitrary smooth function b = b(u, Vu), we have:

(2.5) Lb= —(a,..aj)(ajb’“) + baja? + 0%9;a; — 0;e; — eo + adb.

Proof. (i) We have u; = W + b and the differentiation with respect to
t gives
W, = 0; [ahO(W + b) + a(W + 0)] + ¢H0;(W + b) + (W +b)

= 8;ak 0 W +8;(ak Ob+a$b) +(ad+a})0; W + W ;a0 — b7 8;W + ¢ 9;b+ W +cb°.

The first and third terms in the line above are as in the expression of LW, and
the forth and seventh are from the right hand side of (2.3). The sum of the
second and the fifth terms can be written as

3j(a§b’u(k + afboitk -+ a?b) - bfé)jW
— 0]‘ [b‘a,aj -+ afukbo - a_?(ukbk — b)] - b’a,(ajaj + C)
= (Q1a;)(9;b") — b'dye + dje;.



366 A. Fabricant, M. Marinov, T. Rangelov

It is clear that the rest two terms, the sixth and the eight, give
;b + b = ¥ djc + Fub® — (ujb! —b) = 0 d;c + e + cb°.

Summarizing these expresions, we get (2.3).
(i) We choose b = 0 in (i). Then ¢ = ag, ¢; = ¢ =0, W = u; and the
right hand side of (2.3) take the form ug(')ja‘} + aduy, so we get (2.4).
(iii) Since W = u,—b and the operator L is linear, from (i) with ¢ = ao—b
and from (ii) we get
Lb= Lu, — LW
= (W + b)(9;a) + a3) — (9ka;)(9;b%) — Wojal — djej — eo — (a§ — bYW — cb®

= b(?ja? + ag — (3kaj)(3jbk) — djej —eo + (W —e¢),
but b°(W — ¢) is equal to °9dja; so (2.5) is true. -
We are going to use a comparison principle for solutions of differential
inequalities. In order to be in a position to do this we need a suitable form with
respect to the functions in question in the right hand sides of the equalities (2.3)
- (2.5). The next lemma allows doing this.

= 14 :
Lemma 2.2. Let for a; and b from Lemma 2.1 : =3 {a;? -} ai}
is a strictly positive matriz, B = {b7*} is a strictly positive (negative) matriz,
A-1, B~! are theirs inverse matrices, D = {d;;} is an arbitrary matriz, doj,
j = 1,...,d are vectors, and their arguments are u and Vu. Then the next
inequality holds:

dja; + 1TrB~1(S' + D))’
(26)  (8ka;)(9;b%) + djkur; + doju; > (.<_)[ it 2T:B—1,(cis +2)

—i—Tr/i‘l(D ~ $)B-Y(D - §)* — TrB™'Q,

where S,5',Q are matrices with elements respectively

Sjk = agulbo" - a?u,b’k, s;-k . afu,bm‘ - a?ulb"‘, ik = dljulbw" — (ljou,b”".
The sign ( < ) corresponds to the case of strictly negative B.

Proof. We will prove the inequality (2.6) for B strictly positive, if B is
strictly negative then the proof is the same.
Denote
aj = aduk, Bk = b%ur, 8jx = djour, A= {af} ,
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then
S=AB*—aB, §'=A*f*-aB, Q= D*p*—-§B.

With a suitable change of the indices we have:
(3[aj)(ajb1) + (ljluzj + lljouj
= afuklbl’"u,,,j + (a;‘fujbm + agujbj' + diy)up + (a?ujbloul) + djou;

= My + Mz + M3 + M,,

where

My = Tr AD*uBd*u = TrA*0*uBd*u = TrAd*uBd*u

M, = Tr(A*B" + aB + D)d*u
= T7(2AB" + D — §)d*u = Tr2AG Bd*u
with '
G = %/I_I(Z&ﬂ* +D-S8)B™'=p*B"! + %A“(D - S)B71.

So,
(2.7) My + My = TrA(0%u + G)B(*u + G)* — TrAGBG*.

Let us compute TrAGBG™ :

TrAGBG* = %Tr(2flﬂ* + D - 5)B™! [ﬂ + %(D - S)*A-l]

TrA~Y(D - $)B™Y(D — S)*+ Trp*B~'D* + Trp*B~'(BA - §*)
= M2 + M2z + Ma3.

| =

Since ) 1
S* = BA* — Ba*, BA-S*= E'B(A — A*) + Ba*

and A — A* is an antisymetric matrix, then

1
Moz = 5Trﬁ*B—lﬁ(A — A*) + Trp*a* = (adu;) (%) = Ma.

Since D*f3* = Q + 6B, then
My =Tr B7'Q + TrB~'6B

= T"B_IQ + My.

So we obtain
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M3z 4+ My = Moz + Moy — T'r B_IQ
(2.8) = TrAGBG* - iTr;l“l(D - S$)B~Y(D - 8)" - TrB™'Q.

From (2.7) and (2.8) we get the expression of the left hand side of (2.6) in the
form

TrA(6%u + G)B(0%u + G)* - %Trfl‘l(D — §)B~Y(D - §)* - Tr B71Q.
To this expression we apply the algebraic inequality
(2.9) Tr(AQBQ*)Tr(A~*CB~'C*) > (TrCQ*)?

for strictly positive matrices A, B and arbitrary C and Q. Choosing C as A
and Q as 0%u + G we get
(ka;)(950%) + dijrur; + doju;

S [Tr/i(82u+G)]2 1 = SVB-YD — §\ — TrB-1
=  TrB-14 — AT (D~ 8§)B"(D-5)" - Tr Q.

But since
TrA(0*u+ G) = TrAd*u+ TrB™! [/iﬁ* + %(D - .S')]
= d;ja; — Tra+TrB™! %(s’ + D + 2aB)
= dja;+ 5TrB(S'+ D)
we obtain the inequality (2.6). =]

Remark 2.1. Note that the right hand side of the inequality (2.6) is
the maximum in o for strictly positive B ( and minimum for strictly negative
B) of the quadratic form

K(o) = 0dja; + %Tr B~Y(S'+ S)
(2.10) —%Tr/i‘l(D -8 -0A)B™Y(D-S—-0A)*-TrB™'Q.

We will use the above form K (o) further.

The application of Lemma 2.2 to Lemma 2.1 gives some useful inequali-
ties, which are summarized in the next lemma.
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Lemma 2.3. If the function b(u, Vu) from Lemma 2.1 is strictly convez

(concave) with respect to Vu, then:
(i) There exist functions f, g, h of u and Vu such that

(2.11) LW > (L)fW?2 4+ gW +h

(the sign (<) is for a concave function b(u, Vu)).
(ii) There exists a function l(u,Vu) such that

(2.12) Lb < (2)l(u, V)

(the sign (=) is for a concave function b(u,Vu)).

Proof. (i) We compute the coefficients at ujx in (2.3) and then choose
them as djt. So, D = WA® + E, where E = {ef}. Let by = wb' — b and
A; = wA' + A. Since

" :
el = [ag.u,bO - ad(wb' - b)] = (au + a)b® — a2*(uid' - b) + abuib® — adu;b'*

= boa;‘j - bla?k + Sjks
then E = H+S, with H = b°4,—-b0,A°, D—5 = WA+ H. Let djo = Wad+e?,
€jk = eJuy, then @ = W(A°B* — a®B) + (E*B* —eB). Since d;ja; = W — ¢, from
(2.3) and (2.6) we obtain the inequality
[W (1+ 4Tr B-14°) + 1T B-1(H + S + §"))°
Tr B-1A

Lw >

—%Trfi"l(WAo + H)B"Y(WA® + H)* — WTr B-1(A°B" — a®B)
—TrB~Y(E*B* —eB) + ®W 4 cb° + €0

= fW?+ gW + h.
For example, the principal coefficient f has the form
fe (1+37r B"iA°)2 =il
Tr B-1A 4
(ii) Our aim now is to get rid of the second derivatives of u in the right

hand side of (2.5). Again we have to choose as d; the coefficients of uj in (2.5)
and apply Lemma 2.2 in a view of Remark 2.1, i.e. to apply the inequality

Tr A~1A°B~1 A%,

(9;ar)(95bk) +djrurj+doju; > K(0) = —41Trfi‘1(D-S)B"I(D—S)'-B"Q‘.



370 A. Fabricant, M. Marinov, T. Rangelov

It is clear from (2.5) that djx = —ba’®—b%k +e¥. So D = —bAY— A+ E
and E = H + S. Choosing djo = —ba2® — %49 + €}, we get
(2.13) Lb< adb—eo + %Tr/i"‘(D —-S)B™Y(D - S)*+Tr B7'Q = l(u, Vu)

with the corresponding for this case Q.
In the case of concave function b(u, Vu) the proof of (2.11) with a sign

( <) and (2.12) with a sign ( > ) is similar. =

Remark 2.2. A sufficient condition for the existence of a constant fo
such that f > fo in (i) is:

(2.14) EB > foA- A%+ A% — pA)A"Y(AC - pA)

T

for some p = p(u,q) < fo. Indeed, for the function f we have

1+ 1Tr B-14%)° i
( +12, "-‘B 1/1 ) _ %T,,.A—IAOB—IAO*
r B-

= sup [0‘ - :ll-Tr B~ 1(A% — g A)A71(A° - a/i)]

f=

= sgp Tr B! [g-:i—foB - %(AO' —cA)AT1(A° - a/l)] + fo,

so if there exists o > fo such that

(2.15) f—‘diB > HA% — o DA (A - o),
then f > fo. Let o = 2fo — p, then

B> Z(f_ol—_;f) [4% — (2fo — wA] 471 [4° - (2fo - w)A]

= (fo = WA = (A% = ) = 5(A° = pA) + s (A%~ pA) A (A° - i)

4(f

and we get the sufficient condition (2.14).

It is clear from the proof that f increases to oo as a function of positive
matrix B. The corresponding result for negative matrix B is obvious.

In Section 4 we shall use Remark 2.2 in studying regularizing effect esti-
mates.
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3. Cauchy problem, comparison results

Of course the differential inequalities in Lemma 2.3 are only the first
step toward the comparison theorem. We need much more information about
the coefficients of the operator L (some of them depend on the second derivatives
of u), about the bounds of the functions in the right hand side of the inequalities

for the subsolutions W or supersolution b.
Consider the Cauchy problem for equation (2.1)

¢ = 0ja;(u, Vu) + ao(u, Vu), (t z) €S ,
(3.1) ¢ (Ju(O x) = u(:)o(a.), x € R? )

The existence of a sufficiently smooth solution u(t,z) of (3.1) follows
from the result of [13] under some structural restrictions on a;, ap and some
smoothness’ conditions on ug(z).

Let aj, ag satisfy:

(i) There exists A > 1 such that A~'[€|? < ak€;6 < AJ€|%

(ii) There exist positive constants by, bz such that uao(u, 0) < byu? + b,.

(3.2) (iii) For |u] £ M and arbitrary q

d
Z (laj] + |a?|) (1+ |g]) + lao] £ m(1 + lg])? for some positive m.
T .

Let uo(z) satisfy:
(i) uo(z) € H**F(R?),

(3.3) Holder continuous second derivatives with power 3.

(#2) n}%al\i.xluo(:v)| < oo,n}xgxlajuo(m)l < o0 and nllgxk‘),-juo(:c)l < 00.

Lemma 3.1.  Under the conditions (3.2), (3.8) the Cauchy problem
(3.1) has unique solution u(t,z) € H?**P with bounded derivatives up to the

second order.

This lemma follows directly from [13], Theorem 8.1, Ch. 5. Moreover, due
to Theorem 12.1, Ch. 4 from [13), if up(x) € H™*+A(R?), then u(t,z) € H"*A(R?)

for n > 2.



372 A. Fabricant, M. Marinov, T. Rangelov
Denote by
LW = W — ¢cji(t,2)Wji — c;(t, x)W;

a differential operator in the strip ST = 0,T) x R? with coeflicients ¢jk, ¢;j
continuous, bounded functions in St, ¢;r€;j€k 2 0, £ € R%.

Lemma 3.2. Let W(t,z) is a smooth bounded solution of the differential
inequality

(3.4) LW > fW?2 +gW +h

in the strip S, where lim;—o W(t,z) = Wo(z) > —wo in R4, wo = const > 0,
f > fo> 0 and there is a constant p such that g + V(92 —4fh)y < 2fp, then

(wo— 1)+
1+ fot(wo — 1)+

(3:5) W >—p-— in Sr.

Proof. Since
I
LW +p) = LW 2 f(W +p)* + (9 = 2fm)(W + p) + f (m - %n + 7)
> fo(W + p)> + g1(W + ) + hll
with g1 €0, h; >0 and

Jim [W(t,2) + p) > —wo + 12 —(wo = 1)+

it is sufficient to assume f = fo, g < 0, h > 0 with wo replaced by (wo — pt)4 in
(3.4). We shall prove the inequality (3.5) in every cylinder St,r = (0,T)X {lz| £
R} and then under limiting process we will obtain the corresponding inequality

for St.
For fixed R we define in St,r the function

“wo

— 0 _C'_g_ 2 ) o
Pr(t, x) = 1+ fotwo R2 (l:tl + }") €,

where k& > maxs, D, ¢ (2ij + cf) is a constant and Co > 0, —Co < W in S7.
Then applying operator L to pr we get
Lpr — fopk — 9pR— h

___Jowd _Co
(1+ fotwo)? R?

2C C
(I'r:l2 + k) et + ‘Ezp'l:jjet + 2c_,~:v,-ﬁ(;-e

t
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fowg 2f0¢t)0 Co 12 N Lt fOCg 3 3 3
T+ fotwo)? 1+fotwo}2—2(|a| k) et - _R_‘l—(hl + k) e

wo Co (12 1y ot) —
+y(1+fotwo+Rz (2 H)e) "
< —%%e‘ (I'Ll2 + k- 2¢j; — 2Cj.’l:j) <0.

Since
Lpr < forh + gpr+h, LW 2 foW?+gW +h

and
PRlt=0 £ —wo < Wi=o, pRIIz]:R <-Co < W||3:|=Ra

we conclude under the comparison principle for boundary-value problems (see
Friedman [11]), that W > pg in ST,r. Passing R — oo the inequality (3.5) is
established. -

Lemma 3.3. Let b(t,z) is a smooth, bounded solution of differential
inequality

(3.6) : Lb<I(b) in St
and lim;_ob(t,2) < bo = const. Let
I(b) is a smooth function defined on finite interval I = («, 3],

(3.7) b, bpe I, l(s)>0 on I.

Then,

b(t,x) d
(3.8) t> / —: in St.

Proof. Under the condition (3.7) there exist a constant M = My > 0
such that
’ B ds
supl(s)SMand/ —— < oo foro € 1.
l o 1(3)

B ds , M
Let ¢(0) = exp ( —M 5 for o € I. Then ¢' = T > 0 and
o

-
" _AL(_A%—{—)¢ > 0, so  is a convex function. If b is the solution in the

question and

Ft,2) = @(b(t,2)), LF = @'(0)Lb — ¢"(b)e;ubibr < @(B)I(b) = MF.
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Also Fi=0 = ¢(b)|t=0 < ¢(bo) since ¢ is an increasing function and I < 1
everywhere since b < 8 and I(b) > 0. As in the previous Lemma 3.2 we define
in ST r the function

|2+ k )
ar(t, ) = p(bo)eM* + ml-z-;-—e(M’H)’, where & > Z(2ij +c?).
1

Then t

e(M+1)
R2

Since ggr|i=o0 = ¢(bo) + lﬂl}%’.‘_’i > ¢(bg) > Fli=o and

Lqr = Mqr + (I:L|2 + k= 2¢j; — 2(!]‘.'1:_7') > Mqp.
k
4rljzj=r > ¢(bo)eM® + (1 + F) eM+)t 5 1 5

we conclude as above (see [11]) that

FSQR in ST,R1

i.e.
B ds B ds |z|? + &
exp | -M — | LexpM (t —/ __) 4 ST (M)
( b(t,z) 1(8)) P b 1(5) R?
Passing R — oo we obtain (3.8) -

Lemma 3.4. Let b(t,z) be a smooth, bounded solution of the differential
inequality

(3.9) Lb<LI(b)<0 in ST
and lim;_,ob(t,2) < bo = const. Let
I(b) is a smooth function defined on finite interval I = (a, bg],
(3.10) I(s)<0 on I.
Then,

bo
(3.11) t+/ ﬁ-50 in St.
b 1(s)
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Proof. From Lemma 3.3, since Lb < &, ¢ > 0, then b(¢,2) — bo < €t

bo
in S7. Let ¢(o) = exp (M/ I(( )) foro e Iand M > 0,inf;l'(s) > —M.
o
A M g
Then ¢’ = —-li(,a > 0 and ¢" = —(-A—l%—-li)<p > 0. Denote by F(t,z) =

@(b(t,z)). Then F < 1 everywhere and
LF = ¢'(b)Lb — ¢"(b)ejrbjibr < #'(b)I(b)y= ~MF.

02 4 ks
Define in ST,r the function gr(t,2) = <p(b0)eMt + Ia'lR—:-ke(M“)t, where kM >
d

Z (2ij e == i J) We get
1

e(M'“ )t
Lgqr=-Mqr + —55— (M|w|2 + kM - 2¢;; — 2Cj:l:j) > —Mqp.

k
Since ¢Rrli=0 = 1+ o I + > 1 > Fli=o and ‘Ithl_R >e M4 1:2
1 > F|jgj=r We conclude (see [11]) that F' < ¢gr in St,r. Passing R — oo we

obtain (3.11). ]

4. Regularizing effect and pointwise estimate

Let us consider a Cauchy problem for a particular case of (2.1):
e = 958;(n(w)Vu) + 5yb(n(uw) V),
u(0, ) = uo,

(4.1)

where 7(u) > 0 and b(¢) is a smooth convex fuhction. Suppose that the condi-
tions (3.2), (3.3) hold, so under Lemma 3.1 the solution u have bounded second
7

order derivatives. Denote LS A(u).

We follow the notations of Sectlon 2 for the equation (2.1). Here a;(u,q) =
a;(n(w)g) and ao(u,q) = b(u,q) = r )b(n(u)q), ie. ¢ =0, and A° = X4,
H =04, -0A°=0, §=0, ¢;j=0,Tr B~158'=0, Tr B~1(A°8* - a®B) =
- )\'n(u)c’zg-ujul. The inequality (2.11) then has the form

2
(1+3Tr B14))° N2 |
IW > A1) Ap g d-taz| we
(4.2) = | TrBA ok e S Y R

+ My(u)atuwW = fW? + gW.
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The next regularizing effect for the solutions of the Cauchy problem (4.1)
takes place.

Theorem 4.1. Let X' < 0 and let there exist a constant fo > 0 and a
function p such that p) < fo and

2

1 - - A
(4.3) ZB > foA— M, + ——-,\—j(uA ADATH(pA - Ay).

d

Let 9ja;(n(uo)Vug) > —wo for wo = const > 0. Then

wWo

(4.4) djaj(n(u)Vu) > T fowot

Proof. Under the condition A’ < 0 it follows that g = A’n(u)d_‘iujuz <0.
The condition (4.3) and Remark 2.2 give f > fo > 0. So we apply Lemma 3.2
with go = ho = 0 and obtain the regularizing effect (4.4). =

Remark 4.1. Note that formally if a; = —%——|q|p and 7(u) = e
A = const, then A; = (p —1)A and for g = p — 1 the condition (4.3) becomes

(4.5) (—113 2 [fo— AMp-1))A.

In (1.1) B=7rAso fo = % and regularizing effect estimate (1.5) holds if » > 0,
k> 0.

Remark 4.2. Thelcondition on A, X <0 is not optimal. It is verified
if ns(u) = (Z cke"’\"a")—z, ¢k > 0, A\x € R! with § > 0 but not with § < 0.
This condion can be weakened, as in Fa,brlca,nt Marinov, Rangelov [10], where
the differential inequality for Wi, = ——W with an appropriate H(u) > 0 gives

more chances for the 7 functions.

H()

Using Theorem 4.1 we shall prove the next pointwise estimate for the
solutions of (4.1).

Theorem 4.2. Let u(t,z) be a solution of ({.1), where b(q) is a
smooth convez function, n(u) > 0, 5'n = A(u) and N(u) < 0. Suppose that the
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reqularizing effect for (4.2) takes place, so there exists a function f(t), f(t) 20
such that

(4.6) 9;aj(n(u)Vu) > - f(t).

Then for all0 < to <t < T, o, € Rt and o € (min w, max u),
u(to,xo) u(t,a)
/ n(s)ds < e'\(”)g(‘)/ 7(8)ds
o o

A _ 1

,\(0) '7(0) = H,\(a)(to,i, T0, (L‘)

(4.7)
with g(t) = fti f(s)ds and

t
H)(5)(to,t, %0, %) = i?f) {/ eM9) 3(3(s))ds : z(to) = wo, 2(t) = 'L} ,

to

with B the Young conjugate to b.
If \(m) = A(minu) < oo, the estimate (4.7) may be replaced by

u(t,z)+g(t)
(4.8) / n(s)ds + Hygm(torts 20, z) > 0.

(to,z0)

Proof. If we apply the estimate (4.6) to the equation (4.1) we obtain

b(n(u)Vu)
(4.9) w > —f(t) + W

Let us define the function
' u(r,2(r)) M@)g(r) T _
E(t) = M) / (s)ds + ———n(0) + / M) 3(2(s))ds,
o A(O’) to

where z(s) - vector function and z(to) = o, 2(t) = 2. Then since g(7) = f(7),
we obtain

E(r) = 9O f(r)A(0) / n(s)ds
+n(u)ur + n(w)uiz; + 9(0) f(r) + B(3(T))]

> W) f(r)ln(a) — n(w) + A(@) [ " n(s)ds]
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+e MO (u)yu;z; + b(n(w)Vu) + B(2(T))).

The expression in the first brackets is nonnegative, i.e. [*n(s)[A(o) —
A(s)]ds > 0, because A(s) is a decreasing function. The second expression is
nonnegative due to the Young inequality. So E(t) > E(to) = [ (to,2(t0)) n(s)ds,
for t > to. Now we go to infimum over all smooth curves {z(s)} such that
2(to) = 29, z(t) = « and obtain (4.7). To prove (4.8) note that the conditions
M(u) < 0 and A(m) < oo give n(u+ g) < p(u)er®9 < p(u)er™9 since g > 0
and In(7(u)) is concave. Also, the function b(rg)r is non-decreasing in r since
the function by(s) = s;b7(s) — b(s) is nonnegative. So

b(n(uw)Vu)  b(n(u+g)e**Vu)
n(w) T n(utg)e

b

where A = A\(m) and

u(72(7))+9(7) t ~
/ n(s)ds + / e G(2(s))ds
u to F

(toszo)

= n(u+ g) (ur + w2 + f) + €9B(3)

> eM {ﬂ(u +9)e Mu;z + b [n(u + g)e'AgVU] + 5(5)} 2 0.

So we get (4.8). Note that the pointwise estimate for smooth u is equivalent to
(4.9). ]

Remark 4.3. We will derive, at least formally the estimate (4.8) in
the case of the double powered equation (see Remark 4.1). Here

n(u) = e*, X = const, b(q) = 1—:|q|”, r>0,p>1, k=r+Ap-1)d>0
and if 8;a;(n(uo)Vug) > —wo, the regularizing effect estimate (4.6) holds with

=Y _ ¥ d
f(t) = TFoulol’ fo = 7. For c € R? we get

t t
cj(:z:j—:n:o)=/t‘ c,-z‘,-(s)ds:/ M) ;e 3. (8)ds

0 to



Estimates for Nonlinear Parabolic Equations 379

< [ OB+ [ o0,
to

So
H) = sup [cj(z; — x0) — 7b(c)] = 73 (:v —T-’Uo)
with
t t —Ad(p=1)
= rtort) = [ e-Mp-Dalo)gs = / (M) ¥
r =Tl 2) /to *= Jo \T¥ wofoto ds
= -1+ wnfoto) “F [(1 +w0fot)F - (14 wofoto)]

For convenience we w1ll wute the p01ntw1se estimate (4.7) for w = e* in the case
wp = 0o. Denote a = T’ o=§, p= ;1’—1, then

|z — ol

(4.10) tO '\(to,wo) < ta—w\(t .’L) + k(ta == to) [k(t )] for A 75 0

and

. dptyr lo — 20| 1
(4.11) Inw(to, o) < Inw(t,z)+ - In o +‘p,(t —to) [m] for A = 0.

It is clear that estimates (4.10), (4.11) correspond to the classical Moser

pointwise estimates (see Mozer [14]) in the linear case.
For the Cauchy problem (4.1) in one-dimensional case we will show that

the boundness of the first derivatives for bounded solutions is a consequence of
the regularizing effect.

Theorem 4.3. Letd = 1 and u(t,z) be a bounded solution |u(t,z)| < M

of the Cauchy problem (4.1) and let the regularizing effect (4.6) hold for u(t,z)
with a function f(t). Then n(u(t,))us(t,2) is a bounded function.

Proof. Denote F(t,z;y) = a'(n(u(t,z))us(t,z) + f(t)(x — y). Then
F(t,z;y) is an increasing function in 2 because

L F(t,a39) = A [a(1(u(t, 2))ualt, 2)) + S0 = )] 2 0

from the regularizing effect (4.6). Let a(q) is Young conjugate function of a, so
o'(d'(0)) = o, a"(q) > 0. Then for z =2z + ﬂlﬁa’(n(u(t,m))u,(t,m)) it follows
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,2)

u(t
a(a'(n(u(t, ©))ua(t, z)) — c(0) — £(t) 1(o)do

u(t,r

= f(t) /z[a’(F(t, z;9)) — ' (F(t,y;9)))dy

z ry
= -1 [ / o/ (F(t, ) S F(t, 55 y)dsdy > 0.

So
. u(t,z)
(412)  a@nu(te)us(t,2) S a®) + £0) [ n(o)do
: u(t,z)
and n(u(t,z))ug(t, ) is bounded. =

Note that the boundness of n(u(t, z))ux(t, 2) if |u(t,2)| < M was proved
in Esteban, Vazquez [7] using the Bernstein method.

5. Gradient estimates
In this section we will deal with Cauchy problem
5.1) ue = 0;a;(n(w)Vu) + ao(u, Vu), (t,z) € S,
' u(0,2) = uo(2), =€ RY,

with the same conditions on the functions a.li(l the initial data as in Section
2. We will take for the present as b(u,q) = mﬁ(n(u)q) an arbitrary smooth,

positive, strictly convex function with respect to ¢. Remark 2.1 applied to the
right hand side of Lemma 2.1 (iii) with

0=0, D=EFE —bA®° - b°A, 6 = ¢ — ba® — °a
leads to the inequality
(5.2) Lb < ad — e + %Tr/i"l(D - S)B™Y(D - 8)*+Tr B71Q,

where L is the differential operator defined in Section 2. Since the computations
are the same as in Section 4 we will point out only some of them. In this case

D = —\(bA; + biA) and since (B™1f8)i = %u;uk, Tra = MAVu,Vu) =
Tr B™18A,
Tre® = N(AVu, Vu) + A%(A1 Vu, Vu) = N(AVu, Vu) + Tr B~ 8A°,
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Tr B7'Q = b(Tra® — TrB~'BA%) + 0%(Tra — Tr B™'BA)

= M(AVu, Vu)b = Npaujub
( 33

and eg = (Aag; — ad)b; we get

A2
Lb < adb + (a — Mao1)by + —4—T7-A‘1(1)Al + 01 A)B7Y(bA; + by A™)

(5.3) +XNabuju = U(u, q).

Recalling the comparison Lemma 3.3, we need such a choice of b that the
right hand side of (5.3) I(u,q) becomes less than /() - a nonnegative smooth
function, which depends only on b. This problem - a nonlinear differential
equation - is too complicated, but for the examples, we deal with it may be
solved. Moreover in these vases I(b) = lpb%. So we limit ourselves with the next
lemma, which follows directly from Lemma 3.4.

Lemma 5.1.  Let l(u,q) = lpb?, ly = const. Then under the posed
above conditions on the problem (5.1) and by = sup, b(uo(z), Vug(z)) holds

bo 1
. < — < — 1 :
(5.4) b(u, Vu) < T lobat for 0.__ t< oo’ if lp>0
The time T = T essential, and the example (iii) in Introduction
000

shows that it is exact blow-up time for the Barenblatt-type solutions. Also, let
us note that for the double powered equation Iy = Mk if b = a3 = (p—1)a. Indeed

a=ra, by=(p-1)b, Ay =(p-1)A, B! = 1A_l. So ad = Ara; = Arb,

a3 — Aao1 = 0 and the expression with the trace is A\2(p — 1)db2.

b(n(w)Vu)

. 7(w)

w and v = (o) + /\(U)/ n(s)ds > n(u) to Lipshitz type estimate for some
[

Remark 5.1. The inequality < C corresponds for smooth

function of », namely:

v(v) dr
——— & " - o ’ 3
/V(x) A ED)E 1, where Gy(7,¢&) stllp{fj/\]]b(x) < 7} and A = A(o).
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If
b(x) = b(|x])s x € R¢, Gu(7,€) = €] sup{|x| [b(x) < 7} = [§]Gu(T),

so the above inequality becomes

v dr
— < |A||lz = ¥l
/u(:z:) Gi(T) sl |

Indeed, since b (Yl\ﬁ) = b(n(u)Vu) < Cn(u) £ Cv, then

% / ATy P L Ras
ds | Ju(z) Gy(CT,A2) Gy(Cr, A2)
which gives for s = 1 and z = y — @ the result.

Our last aim in this section is to derive an estimate for u;. Althougt the
regularizing effect from Section 4 with b > 0 gives u; > —f(t), this is not the
best result. If a;(n(u)Vu) in (5.1) is homogeneous, then it is possible to bring
out 7(u) from it and we get the next Cauchy problem

w = 959(u)a;(Vu) + ao(u, Vu), (t,2)€ St,

(5:5) u(0,2) = uo(), « € R4.

According to Lemma 2.1 (ii) with a;j(u, Vu) = 9(u)a;(Vu), it holds
L(wg) = we [0;9'(w)a;(Vu) + ad) = vui + (V'aju; + ad — vag)uy

P'(u)

with v = v(u) = et So by the same comparison procedure as in the proof
of Theorem 4.2, we obtain the next lemma.

Lemma 5.2. Let aj(u, Vu) = ¥(u)a;(Vu), ao(u,Vu) and uo satisfy
the conditions of Lemma 2.3. Let also v'aju; + a3 — vag < 0, then

utz-i- if v(u)2rv>0
Vot

(5.6)
u < — if v(u) L <0.
Ult
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The double powered case gives ¥ = A(p — 1) in (5.6) and for positive
solution w of the original equation ( 1.1) we have in some weak sense,

w w
T s s — —_— .\ ’
2 T Xp= Dt for A\>0 and w; < o= D)t for <0

wy

Remark 5.2. For all purposes in this study we could use the equation
(5.5) instead of (5.1). However the computations would be more complicated.

6. Approximation of the double powered equation

The aim of this section is to construct uniformly parabolic equations,
which approximate the double powered equation. In order to obtain smooth
solutions basing on the results in [13] we must avoid as the singularities at
0(c0) so the growth of the coefficients at co(0) for p > (<)2. The standard

approximation (|¢|? + ¢) 5 only at 0 is not always correct for the purpose since
it does not satisfy the restrictive structural conditions in Theorem 4.1, Ch.6 in
[13]. It may be used if the corresponding solutions are a priory smooth

All of the functxons involved in.this case of double powered equation have
(a )c(s) with n(u) = eM, s = n(u)|Vul|, s; = n(u)uj, the

corresponding vectors ¢’(u, Vu) = E’(s);’, the matrices C(u, Vu) = n(u)C(s)

and

I
C(s) = —2 ( ) [I+ (.‘i_l) T] , T'= {stk} I is identity matrix.

the form ¢(u, Vu) =

Note that T" is a projector,ie. 0 < T < I, T? =T, TrT = 1. Since in the
"pure” powered case A = sP~2[[ + (p- 2)T] we must regularize the function

=1
s
( ) = sP72? in order to obtain a strictly positive and bounded matrix A.
ag(s) . oo . _ _ sal

is such a regularization of s»~2 and denote p = p.(s) = 2

Assume that
&

syl e - e
He the approximation of p — 1 and 0 respectively. Then, omitting

g = 0 =
the index €
[I + (/-‘ - 1)T] )

m|91

A=Lul+ -1+ 0)1), A =%[I+(l-1;—1)T].

calal
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—1
So Ay = pA+a@'W'T, %—/LT < A and
(6.1) |Ay — pd| < |o|A, (A — pd)ATN (A = pA) = a(Ay - pAd) € (0,a%1)
(i) Assume that after the regularization we get mm(l,p -1) < n <L

1
max(1,p — 1), |o| < ¢ and there exists Ac > 0 such that A, < — < —. Let us

c

choose I3 (it will be a choice of b as well) as

Lo (B e+ ) A= 24 Ap=-2) 20

=5 = B

d (;l+|)\|s+‘“’)A, Ap—2)<0
with & = r+ A(p — 1)d > 0, r > 0. Under the above assumptions and the
inequalities (6.1), we obtain that B is strictly positive.

Let § = {l-+[/\(p— 1—p)), 8062 ;l- >0, 64+Apn > 1—(;+/\(p—1) e %and

sgn[A(p—1—p)] = sgn[A(p—2)]. According to the regularizing effect — Theorem
4.1,if M = (6+ M)A — XAy + %(/11 — pA)A~1(Ay — pA) is less than -:?B, then

: 22 2,2
f26+/\u_>_%. But M < (6+A +d'; )A—/\/LS (6+|f\|5+d/>1r€ )A'

The first expression on the right hand side is less than zll-B for A\(p—2) 2 0,

k
since 6 + /\;4 = and the second expression is equal to (lB for A(p—-2)< 0

since § = E So the regularizing effect holds with exact constant fo = —;
«

(ii) Let us estimate now the functlon I(u,q) in the right hand side of

( )

co < o and (p + 1)ad — Apagy < cob. From (6.1) we have
(bA; + by A)A™H (DAL + b1 A)
= (by + pb)? A + 2b(by + pb)(Ay — pA) + V}(Ay — pA)ATI (A — pA)
= (by + pub)2A + b[2by + (21 + 0)b](A1 — pA)
< {(b1 + Hb)? + b{2b1 + (20 + OYbll1} A,

="
Let by = pb, ie. sb' = (p+ 1)b = 54 11)0, so b(s) = s@'(s),
al

V=a(u+1), sb’ = —+1 ptls i B-l1A = C_j— I+(E—B—,— )T =
’ p+1 b sb”

(5.3) after a suitable choice of b = ——b(7(u)g). Assume also that there exists
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2

. _:_1 (I ————0+Z+l ‘) and (5.3) becomes Lb < (co+ AL iﬂl )b € =

14 0(e) aud

I‘ma.lly, we give a regularization of the quantities in question that satisfies
a priory imposed conditions.
Let g(t) be C'? function on R!, such that |g(¢)] < C, ¢(0) =0, 0 <
. . , 1
g < ¢'(0) =1, |¢"] £ C with a sufficiently large C. Then g.(t) < Ey(st)

1 is bounded.

1
is uniform approximation of ¢ on compact sets of R! and |g.(t) — | < —C’st2

I
lgt(t)=1] £ Celt], |g¥(t)] < Ce. Sofor s € R we can choose f;— = e(”'z)g‘("")

" S/l,

< =14 (p—2)g.(Ins) € (min(1,p — 1), max(1,p - 1)),

then p.(s) =

(]
-2 "
0u(s) < elp - 2||g;

- < Cpe and @’ — sP~! uniformly on compact sets of Rt.
min(l,p—1) = 7 € y I

Indeed, s*? < al(s) < s for s < 1 with g3 = min(l,p— 1), p2 =
max(1,p—1). So for § € (0,1),0 < s < }:

(08 :3)

< max (6“‘ o1-p (el”"""l"h‘z‘s 1)) ,

Ia — sP~ 1| < max (max|a — sP~ 1| ma.x|a —s”'ll)

and
1
limsup sup |al(s)—sP7'| <6, 6< T
=0 s€(0,) 5

-1
P sP and so for

1
Such convergence takes place for a.(s) — 1—)3", a1(8) —

r
be(s -sP.
()= %
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