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Recently striking properties have been found for some mappings connected with Hadamard’s
inequality. We derive further properties and applications and introduce some natural related
mappings.
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1. Introduction

Let I C R denote an interval, I° its interior and a,b € I° with « < b.
Throughout the paper, f : I — R is a (measurable) convex function.

The well-known Hadamard inequality for convex functions, which more
accurately might be termed the Hermite-Hadamard inequality (see (3], [4]),

states that 5 f(a) + F(b) f(b)
a+ UC +
() < 2 [ s

Inter alia, this gives upper and lower point estimates for fab f(s)ds, useful in
numerical analysis. The associated “difference mappings” L, P : [¢,0)] — R

defined by
L(t) := L8+ /(@) (”+f(“) / F(s)ds,

P(t) = / f(s)ds — (¢ - a)f (”“)

are relevant for studying the errors in these estimates. Dragomir and Agarwal
[2] have derived some sharp properties for these mappings.




50 I. Brnetié¢, C.I.M. Pearce, J. Pecarié

Theorem A. The mappings L, P satisfy the following:

(i) L is nonnegative, nondecreasing and convex on [a, b];

(ii) P is nonnegative and nondecreasing on [a,b]. If f is twice differer.-
tiable and f and f' convex on I°, then P is also convex on [°;

(i1i) P(t) < L(t) holds for all t € [a,]].

The nonnegativity of L and P is a direct consequence of Hadamard’g
inequality. The proofs of the other properties are less immediate. In fact, there
is a blemish in the demonstration of the monotonicity and convexity of L in [2]
The authors use the second part of Hadamard’s inequality to show that

L(z) — L(y) > (v — y) Ly (y)

for 2 > y. It is stated that the proof for y > a is similar. However, because
of the asymmetry between the two parts of Hadamard’s inequality, the strategy
used does not cover that case.

In Section 2 we note simpler and more direct derivations of these mono-
tonicity and convexity properties and some consequent results. We derive also
analogous properties for the further mappings R, S : [a,0] — R given by

R = L0210, / P

S(1) -/ f(s)db—(b—t)f(bH)

Section 3 is devoted to higher—order properties of these mappings, which appear
to be new. In Section 4 we introduce some symmetric difference mappings
and derive their basic properties. We conclude in Section 5 with higher-order
properties of these mappings.

2. Basic results

First we remark that the monotonicity of L follows from

“(y) = % [fi(w)(y —a) = f(y)+ fa)],

since for f a convex function, f(y) — f(«) < (y — a)fi(y) for @ < y. Similarly
P is nondecreasing, since f is convex and

rir=-s(152) 52 (15
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which is nonnegative for « <t < 0.
The same motivation provides a proof of the convexity of L. For f convex,
we have fi(2) > fi(y) whenever @ > y and so fora <y < <0,

Lh(y) = % Sy —a) = f(y) + f(a)
S 3 Ji@)y —a) = f(y)+ f(a)
< L)y - o)+ (@ =) file) = f(z) + f(a)]
= §[fi@)@—a) = f(x)+ f(a)]
= Li(2).

Hence L is convex.
The final relation (iii) is due to Bullen [1] (see also [5, pp. 140-141]).
An application is the interpolation

523 Jo f(s)ds ,, - f f(s)ds + Y=g . L+ )

T [ f(s)ds + gzo - L0
f(a)+f(b)
2

IN A IA

of the second part of Hadamard’s inequality for « < y < @ < b. The successive
inequalities are just L(y) > 0, L(y) < L(x) and L(z) < L(b). Similarly, we may
interpolate the first part of Hadamard’s inequality by

£(2£h) 2 (b= a)f (232) = (v = &) f (“F*)] + 52 [, S(s)ds
[(b— a)f () — (& — o) f (445)] + 25 /7 f(s)ds
j f(s)ds.

The successive inequalities are P(y) > 0, P(y) < P(x) and P(2) < P(b). This
refinement of Hadamard’s inequality extends slightly that proved in [2].

IA IAIA
~T|~T|H

We now establish corresponding properties of the difference mappings R,
S defined at the close of the introduction.

Theorem 1. The mappings R and S have the following properties:

(i) R is nonnegative, nonincreasing and convex on [a,b];

(ii) S is nonnegative and nonincreasing on [a,b]. If [ is twice differen-
tiable and f and f' convex on I°, then S is also convex on [a,b];

(iii) S(t) < R(t) for all t € [a,D).
Proof. Define F(t) := f(a+ b —t). Set

Ly(t) = EHOHEG_ o) _ ! F(s)ds
_(“_""’.M( — &) = fa-l—b , f(w)du,
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so that
R(t) = Li(a + b - 1), (1)
and
P(t) = [y F(s)ds = (1= o)F (52)
= fa+b ¢ f(w)du—(t —a)f (b_z‘t) )
so that

S(t)= Pi(a+b-1).
Then (i)-(iii) follow immediately from Theorem A.

These properties lead to the interpolations

s Jo f(s)ds < f’”f(s)dsﬂ-z-ﬁ%wﬂ
< f!/ f(s)ds+b—1 f{y!;'f(bl
< !a!+f!b!,

FfY) < gafY f(s)ds+ 3221 ()
< g f f(s)ds + 42 - f (H2)
< b—l;fab f(s)ds

of the two parts of Hadamard’s inequality.

3. Higher-order properties

In this section we obtain some further properties of L and R. First we
introduce some terminology. A function f is said to be absolutely monotone
of order n on [a,b], if f*)(t) > 0 for t € [a,b] (k = 0,1,...,n), and completely
monotone of order n on [a,b], if (=1)F f*)(¢) > 0 for t € [¢,b] (k = 0,1,...,n).
We say f is absolutely convez of order n, if f2¥)(1) > 0 for t € [a,b] (k =
0,1,...,n).

Further, a function f € C*[a,b] is absolutely monotone on [a,b], if it
is absolutely monotone of all orders. Corresponding definitions apply for com-
pletely monotone and absolutely convez functions.

We now derive some new properties of the mapping L.

Theorem 2.

(i) Suppose f € C"[a,b] (n > 3). If f is absolutely monotone of order
n — 2, then L is absolutely monotone of order n.

(ii) Suppose f € C*®[a,b]. If f" is absolutely monotone, then L is also
absolutely monotone.
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Proof. (i) Under the given conditions, f” > 0 on [a,b] and so, f is
convex. Hence by Theorem A, L is nonnegative and nondecreasing, that is,
L)(t) > 0 for k = 0,1. By a simple calculation

1) = 2 [P0 - a) + (k=26 D0)] @<k <),

whence L*¥)(t) > 0 (k = 2, ...,n). Therefore L is absolutely monotone of order
n.
(ii) This is immediate from (i). L]

Theorem 3.

(i) Suppose f € C™[a,b] (n > 3). If f" is completely monotone of order
n — 2, then R is completely monotone of order n.

(ii) Suppose f € C®[a,b]. If f" is completely monotone, then R is also
completely monotone.

Proof. These follow from (1) or from
R™(1) = % (MO -1 - (=250, (a2 2).
Thus from (1) we have
(-)"R™M () = LM (a+b—1) 2 0

for each t € [a, b], whence we have (i) and (ii). n

4. Symmetric difference mappings

Set A = (a +b)/2. We define the “symmetric difference mappings”
T,U,V,W:[0,(b-a)/2] = R by

T(t) = t[f(A+1)+ f(A—0)] - [ f(s)ds,
U) = [ f(s)ds - 2tf(A),
V(i) = ﬁ“—"’t%—ﬁul(b —-a-2t) - fab_:: f(s)ds,

W(t) = [P f(s)ds — (b—a—2t)f(A).

We develop the properties of these mappings in the spirit of our foregoing
work.
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Theorem 4.
(i) T is nonnegalive, nondecreasing and convex on [0, (b — a)/2].
(ii) Hadamard’s inequality possesses the refinement

B L f(s)ds < s | [ F(s)ds + T(y)

b—a f,f) J(s)ds + T(x)
L;'f“’l

IA A
|_

Jor0<y <w < (b—a)/2.
Proof. (i) That T is nondecreasing follows from
T () = [f4(A+2) - fL(A =) 2 0.
Nonnegativity now follows from 7°(0) = 0. Ifurther, for @ > y we have
Ti(z) > [ (A+y) = fi(A=yle > [fl(A+y) = [L(A=y)ly = Ti(y),

so that T is convex. _
Part (ii) is immediate, since it is equivalent to

0<T(y) <T(x) < T (” 3 ”’) :

Theorem 5.
(i) U is nonnegative, nondecreasing and convez on [0, (b — a)/2].
(ii) Hadamard’s inequalily possesses the interpolalion

F&) < 55 ',E:f:f<s>ds+é—‘;‘_—tfﬂf(“—#)
< g [ S()ds + g (4)
< i fY f(s)ds

foro<y<a<(b-a)/2.

Proof. (i) By Jensen’s inequality for convex functions, we obtain
UL(t) = F(A+ )+ [(A—1t) = 2f(A) > 0,

so that U is nondecreasing. Nonnegativity follows from U(0) = 0. On the other
hand, since convex functions have nondecreasing increments, we have for 2 > y
that

f(A—y)—f(A—2a)< f(A+ )= f(A+y).
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Thus
Ul(z) = f(A+a)+ f(A—=a)—2f(A)
2 J(A+y)+ f(A-y)—2f(A)
= Uiy,
whence we have convexity. The proof of (ii) follows in the same way as in the
corresponding part of Theorem 4. ]

Analogous results for V and W may be derived from Theorems 4 and 5
via the transformation: ¢ — (b — a)/2 — t as with the proof of Theorem 1 from
Theorem A.

Theorem 6.
(i) V is nonnegative, nonincreasing and convez on [0, (b — a)/2].
(it) Hadamard’s inequality possesses the refinement

[ f2 f(s)ds £ V(x)

2 [P f(s)dst V(y)
fia);-f(bl

[P f(s)ds

IANIN IA

for0<y<a<(b-a)/2

Theorem 7.
(i) W is nonnegative, nonincreasing and convez on [0, (b — «)/2].
(it) Hadamard’s inequality may be refined as

e f:;; f(s)ds + L—Lf(ﬂz'—b)
%a a+a f(S)(lS + L‘—E (a_-{_b)
%f f(s)ds

F (44

IN N IA

for0<y<a<(b-a)/2.

5. Higher—order properties of symmetric difference mappings

To conclude, we present some higher-order results for the symmetric
difference mappings.

Theorem 8.
(i) Suppose f € C?*™[a,b]. If f" is absolutely convex of order m — 1, then
T is absolutely monotone of order 2m.
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(ii) Suppose [ € C*[a,b]. If f" is absolutely convex, then T is absolutely
monotone.

Proof. (i) T is nonnegative, or T(©)() > 0. Also, we have
T'(t) = [f(A+1) = fl(A=- Bt

Since f is convex, f’ is nondecreasing and so 7” is nonnegative. By a simple
calculation we obtain

TCR() = [FE(A+8)+ FEN (A= 0le+ 2k = DIFH (A +1) - FO-D(4-1)).

By assumption, f(2¥) > 0 (k < m) and thus f(2k=1) jg nondecreasing.
Hence T'(2%) is nonnegative, so T' is absolutely monotone of order 2m.
(ii) From the assumptions, we have as in (i) that T'(2¥) > 0 for each k.

Also
T(”‘“)(t) — [f(2k+1)(A +1) - f(2k+l)(A — )]t + 2k[f(2k)(A 1)+ f(2k)(A - ).

By assumption, f” is absolutely convex, so f(2¥) > 0 for each k. Thus f(2k+2) >
0 and so f(?**1) is nondecreasing. Hence T(2¥+1) > 0 for each k and thus T is
absolutely monotone. -

Theorem 9.

(i) Suppose f € C?™[a,b]. If f" is absolutely convex of order m — 1, then
U is absolutely monotone of order 2m + 1.
(i) Suppose f € C>[a,b]. If f" is absolutely convez, then U is absolutely
monotone. :

Proof. We argue as in Theorem 7, making use of the identities
UCH(t) = fEED(A+ 1) - 1A - 1),
UEHI@) = FERNA+ 1) + (A - 1),
-

The transformation: ¢ — (b—a)/2 — ¢ now gives corresponding theorems
for V and W.

Theorem 10.
(i) Suppose f € C?™[a,b]. If f" is absolutely convex of order m — 1, then
V is completely monotone of order 2m.
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(it) Suppose f € C®[a,d]. If f" is absolutely convez, then V is completely
monotone.

Theorem 11.

(i) Suppose f € C*™[a,b]. If f" is absolutely convex of order m — 1, then
W is completely monotone of order 2m + 1.

(i1) Suppose f € C*®[a,b]. If f" is absolutely convex, then W is com-
pletely monotone.
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