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In this paper we consider the problem

2s
Z Ei(t, ) Divw — (—=1)™ Z D[0P (2)DEu] + [c(t,x) — Clu = f(1, x),

i=1 lal=|8l=m
Diu|r=0 for |o|<m—1,
Dzu (T, x) = /\I)fu(l).a:), 1=0,2s — 1,

where m > 1,8 > 1,A =const # 0,|A| < 1,2 = (21,22, ...,2), ' = 3D x (0.7), T >0, Dis a
bounded domain in R”,n > 1 and k2,(L,z) <0 VY({,x) € G, where G = D x (0,7). If 1 > 1,
a smoothness of generalized solution u € l’l’ﬁi_'“'2"'“‘"”["'/"](6') of the above problem is
obtained. Sufficient conditions this solution to be classical are also found.

AMS Subj. Classilication: 35@G, 35R
Key Words: non-local condition, anisotropic function space, generalized solution, clas-

sical solution

1. Introduction :
Let D be a bounded domain in R, n > 1, with a boundary 0D. Denote:
T = (01,2, ..,8), G =D X (0, 7)), '=9D % (0,7), T > 0.

Suppose, that I is smooth and consider in G the equation

(1.1) Lu = Py(t,2)u — (=1)" Moy (2 )u + [e(t,2) = Clu = f(t,2),
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where C is a sufliciently large, positive constant and

2s
P-z_.,(t,a;)\u = El;;(t,ar)Dgu (tyx), Moy (2)u= Z ]);T[u,"ﬁ(:v)l)fu(t.:c)],

i=1 |eel=|Bl=m

alal
I 0232...0an"
a; > 0,m > 1,s > 1 are integer numbers and the coefficients k;i(t,2), (i, ),

a®P(2) = P*(x) are infinitely smooth functions in G. We suppose that the
conditions ’

. i
Dju(t,x) = %u(t,:v‘), Diu(t,x) = u(t, @),

kos(t,2) SOV2 € G, koo(T,2) = kos(0,2) <0 Vz €D
are satisfied and My,,(2) is a strong elliptic operator in G, i.e.
> e P(2)e” 2 Colé™™ ,VE € R* V2 €D,
la|=|8|=m

where Cy = const > 0, o, 8 are multi indices. In the case s = m = 2¢ — 1 the
equation (1.1) is an equation of hyperbolic-parabolic type in GUT. In the case
s = m = 2¢ the equation (1.1) is an equation of elliptic-parabolic type in GUT'.
If s < m the equation is parabolic.
2. Boundary conditions and function spaces .
Consider the following boundary value problem. To find a solution of
equation (1.1) in G, satisfying the boundary conditions: '

(2.1) Diulr=0 for |a|<m -1,

(2.2) Diu(T,z) = AD{u(0,2), i=0,2s—1; VzeD,

where \ = const # 0, |A| < 1.
Forl=0,2s—1; j = 0,28 — 1; we introduce the {functions

2s . E
gialt,e)= 3 (1)1 (’ = 11 - J)D;'“"J'“u (¢, a) ki (t; )

i=j+1+1
and suppose that for such indices j,!

(2.3) " o;i(T,x) = 0ju(0,2) Va € D.
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Let 5"’((7) be the space of infinitely smooth in & functions, satisfying
the boundary conditions (2.1) and (2.2) and let 5’33(@) be the corresponding
space of infinitely smooth in G functions, satisfying the adjoint to (2.1) and
(2.2) boundary conditions:

DSv|p=0 for |a|<m—1,
ADiv(T,x) = Div(0,2), i=0,2s— L

Let p > 1 and ¢ > 1 are integer numbers. Define the space JI7(G) as
the closure of the function space C*°(G) with respect to the norm

(2.4) llull?,, = Y (DiDZu)’dadt

¢ 1i+plal<pg

and the space H};! (G) as the closure of the function space C’f"(—(i) with respect

to the same norm. ~ .
Define the space H 0(G’) as the closure of the function space C*°(G)
with respect to the norm

”quO—/ Z(Dfu)“’dwdt.

a i<

If p> 1and ¢ > 1 are integer numbers we define the space W[:;?(G’) as the
set of functions u € Ly(G), which have generalized derivatives DiD%u € Ly(G)
for cach index ¢ and multi index a = (ay,ag,...,a;,), such that 1‘—) + ]%1 < 1.
Wl (G) is a normed space with a norm (2.4).

If ¢ > 1is an integer number we deline the space W "7((@) as the set of
functions u € Lo(G), which have generalized derivatives D;’.‘u € L2(G) for each
multi index « such that |a| < ¢.

The scalar product of the space L2(G’) = II 9(G) we shall denote by
(+5-)o,g or only by (.,.)o.

Definition 1. A function w € Hps "™(G) is called a generalized
solution for the problem (1.1) - (2.2), if

(2.5) (u, L*v)o = (f,v)0 Vv € C2(T).
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3. Main resulté

Theorem 1. Let the following condilions be salisficd:

(i) 2k2s1(t,2) — Dikag(t,2) > 0, Y(t,2) € G;
(1) If s > 1, then ky(T,2) = kj(0,2), Ve eD, i=T,s,
If s > 1, then (2.3) is satisficd,
(iti) If s > 1, then Dic(t,x) == Dic(l,x) li=o, ¢=0,2s=2, VaeD.

Then for any funclion f € Ly(() there exisls a generalized solulion for the
problem (1.1)-(2.2).

Let the functions k}(, 2), ¢*(¢, ) be the corresponding coefficients of the
operator L*, formally adjoint to the differential operator L.

Theorem 2. Lel the following conditions be satisfied:

(i) 2kos—1(t,2) — Dykos(t,2) >0 V(1,2) € G,
(i) If s > 1, then kX(T,x) = k¥(0,2), VeeD, i=T,s;
If s > 1, then (2.3) is salisfied.
(idd) If s > L, then Dic*(t,2) |i=r= Dic*(L,2) |i=0, #=10,25—2, VYa e D.

Then the problem (1.1)-(2.2) can have no more then one gencralized solution.
Let us deline the positive constant x by the equality ¢ = \—2,

Theorem 3. Let the following conditions be satisfied:

(i) f € Wy /)

(it) Dif(T,x) = AD;f(0,2) almost cverywhere in D for &= 0,1~ 1;
Supposc that the following condilions are salisficd in (' :

(#81) 2kgg—1 (L, &) = rDelgy(t,2) > 0 Y(l,2) € G,
where r =2p—1, p= 0_,—1; r=2p—4ds+1, p= W;
Suppose that the following conditions hold in D :

(1) k2s—1(0,2) — (p+ 1)Dhas(0,2) £ 0, p = =1,2s — 2;

(v) Dic(t,2) |i=1r= Dic(t,2) |i=0 for i=0,25—3+1;

(vi) Dikj(T,x) = Dikj(0,2), j=T,s i=0,max(l— 1,2s—2+j).

Then the generalized solution of the problem (1.1)-(2.2) belongs to the space

“"7[2,:_ 14+4,2m+(I-1 )[m/s]( )

and Diw(T,2) = ADju(0,2) almost everywhere D for i =0,2s — 2 + 1.
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4. Proofs
Proof of Theoreml. Let u be an arbitrary function, belonging

to the space C'(G). If we denote

2s—1 ,, _ ; . .
R(t)u = Z (2's l') I)fzs-l)*l[c""].l)f'u, - (,""tl)f'“_' 1,

=1 !
then we have
2s
2 / LuR(yudtde = Jo+ > Ji+2 > Jap
& i=1 la|=|B|=m

where

Jo = 2/c(t,:v')uR(‘t)u dida, J; = 2/I;;(t,:zr)l)f'u,]l(l.)‘u didze, i=1,2s;
G &

Jap = —(—1)™ / D [aP () DPul R(Dudtdx,  |a| = |B] = m.
€

By integration by parts and by Lemma 1 from [8], for cach function « € 6\(717)
we obtain the inequality

(4.1) Jo > —e.Clull3,_ 10+ (C = Co® 72 |Jully

where C'y, C'y are positive constants, non depending on ¢ € (0, 1).
Integrating by parts J,z and summing by indices «, /3, such that || =
|3] = m, we obtain '

2 Z Jeip = Z gt 2811 go () DBuDYu didz.
lo|=|B]=m G lol=18l=m
If we fix ¢ € [0,7T], for the restriction wu(t,2) of this function u € 5"“((7) [rom
the Garding inequality [4], we obtain
[275] ,_'D/3, D Lo > Callull. v 2 (1 7 N2
a®(x)DuDiwde > Cy|luty )5 p + Callult, )G o »
D la|=I8l=m

for appropriate constants C'3, ("y and because the restriction u(l,a) € C°(D,)
satisfies the boundary conditions

Diulop,=0 for |a|<m—1, where D, =D x {i}s
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and the Garding inequality, proved for u € CG*( D).
Multiplying the last inequality by ¢*x25=! and integrating with respect
to t from 0 to T, we obtain

(4.2) / Z " R P () DPuDSw dide > ||'u||'f,,m + Cy |l
¢ lal=|8l=m

for each function « € C°((), where C'y, C'y are appropriate positive constants.
For the integrals J;, ¢ = 1,2s by integration by parts we obtain

2s
" < 3 — 2 00 1 7
D i 2 =Csllull3e_y o+ 26 [ DFMullg,  Vu € @),
i=1
where C's = const > 0 and ¢ is the constant from the condition (i) of the

theorem.
From Lemma 1 from [8] we obtain that for each ¢ € (0,1) there exists a
constant Cg > 0, such that for each function u € C'°°(G), we have

2s
(43)) Ji > =Cs llully,_1,0 — Coc® 2 [ull} + 28 || DE1u])3, Yu € C=(@).

i=1

Now from the inequalities (4.1)-(4.3), we obtain

2 [ Lu.R(t)u dide > —(C5 + C4) ||u[|§3_1’0 + 26 ”Df“‘lu”?)
G
H(C = Ca = Ce®% = Coc%) |lull + Cs [lullg,, » Y € C(@),

where ¢ € (0,1) is an arbitrary constant, C; = const > 0, i = 1,6.
By Theorem 10.2, [2] it follows that there exists a constant C'; > 0, such
that \
26 || DF* ullg + Callullgm 2 Crllull3,_ym Yu € E=(@),
from where it follows that '

(Lu, B(t)u)o > {C7 = &(Cs + C1)} lullys_y m
H{C = Cy = Cye?2 — Cye?=2Y ||u|l Vu € O (T).

The constants C, i = 1,7 do not depend on €. If ¢ is a sufliciently small pa-

rameter and C is a sufliciently large positive constant, then there exists another
positive constant C, such that

(4.4) (Lu, R(t)u)o > C ||ul|? Vu € C(G).

2s—1,m
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Let v(t,2) € 6‘*\(?) be an arbitrary fixed function. Consider the non-local
problem

(4.5) Riyu=v in G,
(4.6) Diulp=0 for |af<m—1,
(4.7) Diu(T,x)= ADiu(0,2), i=0,25s—2; VYeeD.

Without loss of generality, we can consider (4.5) as an ordinary dillerential
equation with respect to the variable ¢ with constant coeflicients (again with
respect to ) in the lorm

25~—1

(4.8) Z (281 )(u)(zs"l)"lDin + D2y = 7"ty

=1
Dividing the corresponding characteristic equation

2s-1

(4.9) Z (231— l)(":)('z.q—l)—lx,l + 21 =,

=1

by x25=1 and set 7 = x/x + 1/2, we obtain
2s—1 1 2s—1 :
(r +5 ) Fei(r— 5) -1=0,

from where by Lemina 2, [8] it follows that the last equation has only simple
zeros. Hence the equation (4.9) also has only simple zeros.
The general solution of the equation (4.8) has the form

2s5—1

w(t, ) = Z bi(2)mi(t) + no(t, a),
=1

where {7;(£)}?27" is a fundamental system of solutions of the corresponding
homogeneous solution and (¢, 2) is a partial solution of the equation (4.8).

To build #o(t,2) we use a method of Cauchy [7, p.459]. We build a
solution of the homogeneous equation, corresponding to the equation (4. 8), sat-"
isfying the Cauchy conditions

N li=¢= 0, Dyn |4=¢= 0, D??/ le=e= 0, Dz"' 1) |¢_¢_ L,

where £ is an arbitrary point in (0,T). Let we denote this solution by o1, 8).
It exists and is unique, because det [|9(¢)]| # 0 V€ € [0,77], where ||5(4)]] is the



116 G. P. Paskalev

fundamental matrix of considered equation. Then the function

t
(4.10) no(t,x) = /d’(t,f)e“"’rv(ﬁ,m)(l{,
to
where to € (0,7) is fixed, is a partial solution of (4.8) [7]. Denote
ba(2) , D,
B)=| b)) |, Di=| D?
1)23_1(1') ths—‘z

Now the boundary conditions (4.7) have the form
(4.11) (TN = Min(0)I] B () = AD (0, ) — D no(T, ).

The last system has a unique solution B () if and only il

(4.12) det [[In(T)|| = A lIn(0)|l] # 0,
where [ln(t)ll = [Dini(1)] ;21503 -

Using the results of Lemmas 2,3 from [8], it is easy to obtain that the
inequality (4.12) is true.

If we solve the system (4.11) using the Cramer formula, then from (4.12)
it follows, that the obtained solution fulfills the boundary conditions (4.6), be-
cause the function exp(—«t)v(t,z) also fulfills the conditions (4.6) and the dif-
ferentiation under the sign of the integral (4.10) is possible. In addition from
the construction of this solution and from (4.5) and (4.7) it follows, that

D~ u(Tyx) = ADP* ' (0,2) Va eD.

Let us denote by H, (2"—1 m)((”) the space with a negative norm, adjoing
to st —L ’"(G) Then if u(t x) is a solution of the problem (1.5)-(4.7), where

v(t, 'L) € C2°(G) is an arbitrary fixed function, from the explicit construction of
the solution it follows, that u(t,2) € C°°(G') and from (4.4) we have

”L*v”—(2s—1,m) . ”u”2s—1 m = (.L'l) 'lt)o = (U Lu)o

= (R(t)u, Lu)o > C. ”‘“”gs—l,m ’
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from where

(4'13) ”L*v“—(2s—l,m) = C. ”'U“() Vv € C"SO(C")5
because from the equality R(¢)u = v it follows that |[v||y < [|ullpg—y,m-

From (4.13) it follows that there exists a [unction u € ]IZ;_I""(G'), for
which (2.5) is true [1]. Thus the theorem is proved. ]

Proof of Theorem2. Let v be an arbitrary function, belonging
to C2°(G). Denote

— s 1

Ra(tyu=— " ( 1 )D?s‘”"[e-"‘]mu — e DE .
=1

Repeating the scheme of the proof of Theorem 1, we obtain the estimate

(L*0, Ra(t)v)o 2 C' [lo]l3,-y . Vo € C2(@),

1,m

where C' = const > 0. _
For any function u(t,2) € C*°(G') consider the non-local problem

(4.14) Ri(tyv=w in G,
(4.15) Div|r=0 for |of<m-1,
(4.16) ADiv(T,z) = Div(0,2), i=0,2s—2.

By Lemmas 1-3 from [8], analogously to the proof of Theorem 1, it is easy to
obtain that the problem (4.14)-(4.16) has a unique solution v € If tzi_*l "(G). In
addition, from the construction of this solution it follows that v € 52"(@)
Denote by Iltjiis—l’m)(G) the space with a negative norm, adjoint to the
space H 2™ (G). Then, if o(t,2) is a solution of the problem (1.14)-(4.16) for

t,a,*

any fixed function u € 6'°°(G), we have
”Lu”—(Zs—l,m),* ”"”23—1,111 2 (L‘ll., 'U)O = ('ll., L*’D)o
— (R](t)’l), L*’U)() Z C, “'l)“.gs_]’m ,

from where by
(4‘17) ”Lu”—(2s—1,m),* 2 c’ ”u”O Vu € C’oo((_7’)’

because the equality Ri(t)v = u implies that ||uly < [|o|l,5—1 .
By the estimate (4.17) we obtain an uniqueness of the generalized solution
of the considered problem [6]. The theorem is proved. L]
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Proof of Theoremi3. Let first !/ =1. From the conditions of
the theorem, it follows that arve fullilled the conditions of T'heorems 1,2, llence
the problem (1.1)-(2.2) has a unique solution u € Ilfﬁ._"""((v.'). Let us set

Lyw = kog(t,x) D2w + {legs—y () + Dykag(l, a)} ]).f""~| w

+D£l.723_1(l,,;zt)Df"’"zm — Nw—(-1)" Z la] = 13] = m l)f (r/,""” I)f'(l.v) s

252
fi =D, {f —c(tya)u— Nu—[1 — 5] Z/.r;(l.,m)l)fu} ,

i=1

where N = const j 0 and &, is the Kronecker symbol. Consider the problem

(4.]8) Ll'w = f| in G’,
(4.19) Diw|r=0 for |a] < m—1,
(4.20) Diw(T,x) = AD{w(0,2), i=0,2s— 1.

Let us set:

fors>1: kV(,2)=0, fori=T,2s=3,

fors>1: KL () =[1 = 8] Dikasi(l. ),
ESD(62) = keyge i (L w) + Diless(L, ),
lc.gi)('l., x) = koL, ).

We can write the equation (4.18) in the form

Liw = l.r.(zl)(.l., &) D¥w + kg's)_z(l., &) DF w4 I\:gl{_z(l., ) DFE 2w

- (=™ Z D’,i (u‘"ﬁ])gw> + Cy(t,a)yw = fi(l,a).
|leo|=|B]=m
It f }11["1/3] ‘ . 2s—=1,m, . s eas
S e W N G), we I, (), then from the delinition of the

function f, we have that f; € L,((). IFrom the conditions of the theorem it
follows that if N > 0is a sufliciently large positive constant, then for L and f,
are fulfilled all the conditions of Theorems 1, 2. Tence the problem (-1.18)-(-1.20)
has a unique solution w(t,x) € 237" (G).

For an arbitrary clement ¢ € C'2(G).it is ecasy to see that the function

t
o(t,a) = Z(lLa)+ (A b 'l)_lZ((),.'zr), where Z(l @) = /C(T, a)dr
i
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also belongs to 5:}‘(5) and Dyv(t,2) = ((t, o) ¥V (La) € G
Hence the equality

(4.21) (w, Liv)o = (fi,v)o

is true.

From the condition (ii) of the theorem, we have f(7.2) = A f(0,z) almost
everywhere in D, ky(T,2) = ki(0,2),i = 0,2s=2 for s > 1 Va € D and
e(T,2) = ¢(0,2) Vo € D.

Since v € M2™"™(G), then Dju(T,x) = ADju(0, ), i = 0,2s — I almost
everywhere in D. Finally, from the deflinition of function ¢ we have Dyv = (.

Integrating by parts, we obtain

25—-2

(4.22) (fi,v)o=—(f—cu—Nu—[1 - b5] Z ki (t,a) ]);'n (t,2),C)o.

i=1

From Lemma 1 from [9] for the function w, there exists a unique function ® €
Hﬁ;‘l’m(G) such that D;® = w, from where

(D, Liv)o = (f1,0)0 Vv € C(G).

Integrating by parts using the fact that the corresponding boundary in-
tegrals vanish, and using the definition of the function », we obtain

(D@, LTv)o = —(®, D{ D [koy(t, v)0] = DET(Dihos(t, &) + kos_1(L, x))]

+ D2 (Dikegs—a (L, 2)0] — (=1)™ Z Dby (“aﬁDQv) ~Noho
|ov|=]Bl=m

= —(®, DZ* N Dykay(t, x) Dyv + kay(t, ¥) DFvo — by (£, 2) Dy}

-(-n" Y Df (a“ﬁ(:v)Df.Div) — NDw)o = —(®, D21 D,[kas(t, 2)C]
ler|=1B]=rn

(423)  —ka(t2)(} - (1™ S DB («F’/’(.«z:)n;jc) ~ NC)o.
lee|=18l=m
Consider the operator

L'Z'l/’ = Iv'z,«,(t, .’L‘)_D‘tzs'(/) + ]‘:‘ZS—-](", w)])[?s—l 1/’
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- ="y oo (u,“/"(a:)l)g?,/v) s

|ev|=|B|=m

and his formally adjoint operator
L3¢ = DEF[kas(t,2)C] = DF~ kygoy (1, 2)C]

(4.24) =" S 2 (a"f’(m)l 5¢) = NC.

la|=|B]=m

I'rom the equalities (4.21)-(4.24) it follows that

' 25-2
(®,L3C)o = (f = Cu= Nu—[1=8a] D ki(L,@) Dju(t,2),C)o V ¢ € C(G).
i=1 )

Hence @ is a generalized solution of the problem

25—2

(4.25) Lap= f—Cu— Nu—[1l=6b4] Z i (L) Diu (L, ),

(4.26) Dy r=0 for |a|<m-—1,

(4.27) Dip (T, ) = ADi(0,2), i=0,25—T.

But u is a generalized solution of the problem (1.1)-(2.2) and the equality

(4.28) (u, L*)o = (/,{)o V¢ € CX(T)

is true. Hence we have : -
28—-2 ] :

(4, L3C)o=(f—Cu— Nu—[1- 4] Z ki(t,x) Dyu(t,z),0)o V ¢ € C2(G).
i=1

If we choose a constant N > 0 sufliciently large, then from the condition of the
theorem it follows that the problem (4.25)-(4.27) has a umqno solution belonging
to the class II75"""™(G). Hence from the uniqueness « = & almost everywhere

in G, follows D,u = w almost everywhere in . Then D,u € II”—1 (@) and
for D,u are fulfilled the boundary conditions (4.27) almost ovolywhm‘e in*D.
Irom the equality (4.28) we obtain

2s
Z a"ﬁ(:u)DgquC dtde = (f — cu — Z ki (t,2) Diu (t,2),¢)o
G lol=I8l=m E i=1
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for cach ( € 5’?(5), hence for each ¢ € Cg(G). Then from Theorem 3, [4], it
follows that u(t,z) € WB ;?’"( G).

Irom the estimates of the mixed derivatives (point 10.2 from [2]), we have
that u(¢,z) € I’VZ;’z""((}'). Now from the equalities Diw (T,x) = ADiw (0,2), i =
0,25 — 2 almost everywhere in 1, changing the index we obtain Diu(T,x) =
ADiu(0,x), i = 0,2s — 2 almost everywhere in D if we add the equality u (1, x) =
Aw(0,2). Thus, the theorem is proved in the case when [ = 1.

Let we suppose that the theorem is true for ! = Iy, where [y > 1 is a fixed
number, and that the conditions of the theorem are fulfilled for I = lg+ 1. Then
the problem (1.1)-(2.2) has a unique solution u € I'I’t%:—l+l°'2m+(l°—l)[m/ a‘]('G),
such that almost everywhere in D, Diu(T,x) = ADiu (0,2), i = 0,25 — 2 + lo.

Let us set in the conditions of Lemma 2, [9],

w(l,s,m) =1, v(l,s,m)=1[m/s], x(I,s,m)=2m+ (I - 1)[m/s],
where [.] is the usual function “entire part of the argument”. For this choice
it is easy to check that are [ulfilled the conditions (5)-(10) from [9]. Since we
suppose that f € W{;H’("’“)['"/"](_G), u € M"Z:"Hlo’zmﬂb_l)['"/"’](G’), then
from point (i) of Lemma 2, [9], it [ollows that f; € I'fo’ajld'”/ (7). Now

for the operator Ly and for the right hand fi, all the cnditions of the theo-
-rem are fulfilled. By the suggestion in induction, we obtain that the problem
(4.18)-(4.20) has a unique solution w € T/Vz:_Hl°’2"'+(l°_1)['"/ (@), such that
Diw (T,z) = A\.Djw (0,z), i = 0,25 — 2 + lo almost everywhere in D. Repeat-
ing the discourses conducted in the case [ = 1, we obtain that D,u = w almost
everywhere in G. Then Dju-€ V ’,%i_1+l°’2m+(l°_l)['"/ (@), from where u €
W;‘: :+I°’0( G). Almost everywhere in D we have Diu (¢, a) |i=r= ADiu(l,x) |=0
, 1=0,28—-14 .

By integration by parts in the equality (2.5) and moving some summands
to the right hand, we have

2s
Z a*P(x)D2uDB¢ dtdx = (f — cu — E ki (t,2) Diu(t,2),{)o
G lel=l8l=m i=1

for each ¢ € C°(@), hence also for cach C§°(G). From pbini. (ii) of Lemma 2,

23 .
[9], it follows that the function fo = f — cu— 3 ki (t,2) Din(t,2) belongs to
\ =1

3
the class I/Vg ;D""[m/ "](G’), from where using again Theorem 3 [rom [3], we obtain
that u € I/ng"”'h’[m/’](G). Now the estimates from point 10.2 of [2] give us that

u € I’Vt2’2+l°'2m+l°[m/ sl(G). The theorem is proved. N
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A cylindrical domain of the considered type fulfills a b-horn condition for
a vector b = (b, by, by, b3,....0,) such that b; > 0, i =0.n, by = by = ... = 0,,. If
[ > 1is an integer number, such that

1.29) 2 +l{ | + n <1
(4. -1+ 2s = 1+1 " 2m+ (I —1)[m/s]

then from Theorem 10.4, [2] it follows that the derivatives I)‘u. ¢ < 2s of the
generalized solution u € lV“ Ltlanet (=) ['"M( (/), ol the problem (1.1)-(2.2) are
classical. Now again by ,llloowm 1041 from [2], we have that if £ > 1 fulfills the
inequality

. 2m 1 1 n
(4.30) 2m + ( [nz/a] {Zs— 1+ 2771+(I—1)[m/3]} <1

then the derivatives DSu, |a| < 2m of this solution are classical.

Il both the inequalities (1.29) and (4.30) are true, from Definition 1, using
integration by parts, we obtain that the generalized solution of the problem
(1.1)-(2.2) fulfills the equation (1.1) in classical sense.

5. Example

Let f € Ly(G)yn = 2,T = 1,4 = const > 0, = const > 0,X =
const > 0. Set D = {(ml,mz)/:lr'f + ;vf < XL G=Dx(0,1).1=09D x (0,1).
Consider the problem

[sin(2mt) = 1]Dfu+ ADPu+ DS w+ DS, u

(5.1) =[cos(wt) — Clu = f(t,x) in @,

(5.2) Diulp=0 for |ao] <2,

(5.3) Diu(T,x)y= (1/2)Diu(0,2), i=0,5.

In this example we Imve s = m 3, ke(t,a) = sin(2wt) — 1, ks(t, L)

A, ki(ta) =0, = 1,4, «®P(a) = 1, il a = 3 = (3,0), a®’(2) = 0 for other
multi indices, e(t,x) = (,os(vrl .

The equation (5.1) is a sixth order hyperbolic-parabolic type equation.
It is easy to see that il the constants A, (" are sufliciently large, [ € lV”((,)
and D f(T,x) = (1/2)Dif (0,x), almost everywhere in D for i = 0,1 — 1, where
[ > 1is a parameter, then all the conditions of the theorem are fulfilled. Hence
the problem (5.1)-(5.3) has a unique generalized solution helonging to the class
]'V3:1'3+1(G). If we put [ = 3 in the conditions (4.29),(4.30). then the generalized
solution of the problem (5.1)-(5.3) is a classical solution of this problem.
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In the present paper we generalize the result of [5], where the case of

second order equation is considered.

(1]

[2]

(3]

[7]

(8]

[9]

References

Yu. M. Berezanskij, Iixpansions in eigenfunctions ol sell adjoint opera-
tors, In: Trans. Amer. Math. Soc. (1968).

O. V. Besov, V. P. Ilin, S. M. Nikolski, Integral Represenlations of
Functions and Fmbedding Theorems (In Russian), Moscow (1975).

Fan Duck Chau, Boundary value problems for high order equations of
mixed type in cylindrical domain (in Russian), Compt. Rend. de I’Acad Bulg.
Sci., 34, No 10, 1339-1342.

A. IF'riedman, Partial Differential Equations of Parabolic Type, Prentice
Hall (1964).

G. D. Karatoprakliev, Non-local boundary value problems for mixed
type equations (in Russian), Diff. Uravnenia, 25, No 8 (1989), 1355-1359.

G.D. Karatoprakliev, Boundary value problems for mixed type equa-
tions in multidimensional domains (In Russian), Banach Center Publica-
tions, 10 (Partial Differential Fquations) (1983), 261-269.

N. N. Matveev, Mcthods of Integrating of Ordinary Differential Fquations
(in Russian), Minsk (1974).

G. P. Paskalev, On a non-local boundary value problems for a mixed
type high order equation (in Russian), Diff. Uravnenia, 36, No 2 (2000), To
appear.

G. P. Paskalev, Suflicient conditions for smothness of the gencralized
solution of non-local boundary value problem for a high order mixed type
equation (In Russian), Diff. Uravnenia, 36, No 3 (2000), To appear.

Department of Mathemalics Received: 16.04.2000
Technical University of Plovdiv

61,

“Sankt Petersburg” Blud.

Plovdiv, BULGARIA



	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123

