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In this paper, the space of multipliers from L, (G) to Su (G) is examined by using
the space Sy (G) defined by Cigler in [2]. Also, it is discussed the space of multipliers from
Sw (G) onto itself. At the end of this work, it is showed that, in the case Sy (G) is reflexive,
the multipliers space from L1, (G) to Sw (G) is homeomorphic to Su (G).
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1. Introduction

Throughout this work, G denotes a locally compact Abelian group with
dual group ¢ and dy denotes a Haar measure on G. We denote by C.(G)
the vector spaces of continuous functions on G with compact support. Let
A be a Banach algebra. If for all 2 € A, 2.A = {0} implies ¢ = 0, then
A is called without order. Let (B,|.||g) be a Banach space and (A4,].||4) be
a Banach algebra. If B is an algebraic A-module, and ||a.b||g < [la|/4]I0llp
for all @ € A, b € B, then B is called a Banach A-module. If the Banach
module B is continuously embedded in A and module operation is given by the
multiplication in A, we call B a Banach ideal of A. The left (right) translation
operators Ly(Ry) are given by Lyf(z) = f(z — y),(Ryf(x) = f(z +y)) for all
N
¢,y € G. The Fourier transform for any f € L'(G) is denoted by f or Ff. It
A
‘ FIl < Ifll;- We will denote the space of pseudo-measures by
(o]
A*(G) (see p.97, [9]).

is known that
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A real valued measurable function w on & is said to be a weighted fune-
tion (Beurling’s weight) if w (z) > land w (z + y) < w(z) . w(y) forall 2,y € G.
We set for 1 < p < o0,

(1) I (G)={f|fwe I’G)}

It is a Banach space under the norm || f|,, ,, = [|f.w]l,-

Particularly, for p = 1, L} (G) is Banach algebra under convolution called
a Beurling algebra. A weight function w is said to satisfy the Beurling Domar
condition (shortly BD), if one has

@) Z log w (na) 25

n>1 n?
for all z € G, [13].

Let X be a locally compact Hausdorff space and A (X) be an algebra of
complex-valued continuous functions on X with the ordinary pointwise algebraic
operations. A (X)) is a standard algebra if it has the following properties:

1) If fe A(X) and f(a) # 0 at a point @ € X, then there is a element
g € A(X) such that g (z) = ﬁ for all « in some neighbourhood of a.

2) For any closed set £ C X and any point ¢ € X — E there is an element
f € A(X) vanishing on E and such that f(E)=0.

A normed standard algebra A (X) is said to be a topological standard
algebra. Let A(X) be a topological standard algebra. If the functions with
compact supports in A (X) are dense in A(X), then A(X) will be called a
Wiener algebra [13].

Let (A,]|.||4) be a Banach algebra. The proper subalgebra B of A is
called an A-Segal algebra if:

1) B is a dense ideal of A.

2) (B,||-llg) is a Banach algebra.

3) There exists M > 0 such that ||f||, < M ||f|lz, (f € B).

4) There exists C' > 0 such that || f.g]lg < C||f]l4l9llg for all f,¢ € B.

If By and B are Banach A—modules, then a multiplier (or module homo-
morphism) from B; to B is a bounded linear operator T' from By to B, which
commutes with the module multiplication, i.e. T'(a.b) = «T'() for all « € A and
b e B,l' The space of multipliers from By to B3 is denoted by M (B, By)(or
Hom (B, B2)).
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We let

(3) M(w)=(peM(G) /w dlp| < o0 g,
G

where M () is the space of bounded regular Borel measures. It is known that
the space of multipliers from L), (G) to L. (G) is M (w),[7].

Let G be a locally compact Abelian group and I’ be a dense ideal in
LY, (G). If (F,].||) is a Banach space satisfying || []], ,, <|f | and || f * g|| <
1SN llglly o for all f € Li,(G) and g € F, then we call I' normed ideal in
L (G). We denote by Iy, the set of all f € L} (G) such that f has compact
support. If the weight w satisfies (BD), then Fy ,, is a dense ideal in L (@), [3].

2. Multipliers from L} (G) to 5,(G) and
multipliers of the space 5, (G)

Lemma 1. If I is a normed ideal in the space L} (G) and w satisfies
(BD), then Iy, C F.
Proof. We denote by F(F), I'(LL (G)) the image of I and L (G)

v
under the Fourier transforms, respectively. It is easily seen that the func-

S M
tions HIHF(F) | fll and || f L (G)

F(LL (G)), respectively. Then it is also easy to see that F (I") is a dense Ba-
nach ideal in the space I" (L) (G)) by using the definition of the norm on the
spaces I (I") and F (L), (G)) and the properties of the space F'. Also it is known
that the space (L, (G)) is a standard algebra if w satisfies the condition (B.D),
(see [13]). Now, we will show that cospl” (I") = (). TFor this, let us assume that
the set I

(4) cospF(F):{i‘EG’\f(rE):O,VfEF})

= Ifllpy, () are norms on F(I7) and

is nonempty. Then for at least one element & € &, there exists an f € F such
that f(&) # 0. IHence we can choose ¢ > 0 such that lf('i) | > ¢. Since F'is

dense in LY (@), then there exists a sequence ( Jfa)nen C F and ng € N such
that ||fo — fll,,, <€ for all n > ng. Thus, from the inequalities

(5) |

| N T R T

the sequence ( fn) convergences uniformly to the element f. Since uniform
neEN

convergence implies pointwise convergence, then |f, (2) — f(&)| < ¢ for all n >
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ng. Thus we obtain

(6) |f(.£-)’ < ]f(o?)—fn(i-)|+ fn(i')l <e+ fn(n«")|

for all n > ng. Also, since & € cospF (F') and f,, € F for all n, hence

Ja (@) =o.
By using (6) we have If(:i:) l < €. This contradicts with lf(:i) l > €. Then
cospF (F) = (. Hence F (F') contains all functions in F (L1, (G)) with compact
support ([13], p.20). This implies Fp,, C I -

Lemma 2. Let F' be an essential normed ideal in the space LY Q). If
w satisfies (BD), then p x f € F and also there exists a constant C > 0 such
that :
I fllp < Cllelly, 1|z

for all p € M (w) and f € F.

Proof. For any g € Fo,w and p € M (w), we have g x u € L. (G) and
the inequality
(7) g * pll1,w < gl el

is satisfied [7]. Moreover, since § has compact support, u Yg= ft.g has compact
support and we get g * u € Fp,,. Since w satisfies (BD), L) (G) has a bounded
approximate identity (eq),eg With compactly supported Fourier transforms (5.
Then, there exists a constant C > 0 such that ||ep||1’w < C forall B8 € I. Hence
eg * L € L1, (G) and we write

(8) e eplly o < lleslly,wlllly, < Cullully,
forall B €I, € M (w). Thus by Lemma 1 and (8), we have p*g*epg € F and

(9) i+ g * ellp < e+ eplly, llgllr < cllullyllglip

for all g € F and for all B € I. Here by using the facts that F' is an essential
ideal and (eg)se; is a bounded approximate identity of the space L. (G) from

Corollary 15.3. in [4], we get
(10) | [l * gllp = lim |l + g+ egll -
Using the inequality

(11) e * gl < Cellgllllall.
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we obtain gx u € F.

The next step is to show p* f € I' for any f € F and p € M (w). Since
F is an essential normed ideal in the space L} (G), then for given any ¢ > 0
and f € I, there exists a; € I such that ||f — f*es||p < ¢ for all @ > oy
by Corollary 15.3 in [4]. Moreover, since f * eo € L} (G) and &, has compact
support, then f*e, = féa has compact support and therefore f x ey € Fp ,, for
all « € I. We let g4 = f * e4. Then

(12) 9o — fllp <€

for all @ > @;. Since the net (ga)aeJ C Fy. converges to f in the space F, then
(9a)aes is a Cauchy net. Thus for same € > 0, there exists ay € J such that

(13) lge — 98l < €/

Bl

forall a, 3 > ay. Alsosince gq, gg € Fy,, for all a, 8 € J, by using the inequality
(11) and (13), we have p * go, p * gg € F and

i * 9o — 1+ gpllp = N1 * (90 — 98)llp < C llullllge — gsllp < €

forall a, 3 > az. Hence (4 * ga), s is a Cauchy net in the space F and converges
to a function h € F. Then there exists az € J such that

Ik * 9o = hllp < &

for all a > a3. On the other hand, by the inequality I, < Nl-ll s We get

(14) k% 9o = Ally < €
for all @ > az. Also from (7) and (12), we have
(15) - [l g = px fllyw = Nl % (90 = Fllw < llslly-

for all @ > a;. Now, we let ap = mak{ai,a3}. For a fixed a > ag, we write

(16) lw*f—hllyw < e *f—1*galliw+ 14 *ga— Rl < llellee +€

by using (14) and (15). Since the right side of this inequality approaches to 0,
then we have p* f = h € F. Finally for given f € F, we write

(ke * f) = (e * ) * eallp + |I(1 % f) * eallp

lexfllr <
< e * ) = (ux f) * ealip + Cllplly, - 1 fllp-
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Since I is an essential normed ideal, we conclude that

(17) e Fll < C llll 11/

by Corollary 15.3. in [4]. %
A kind of generalization of Segal Algebra has been given in [2], as follows:

Let Sy, (() be the subalgebra of the space L), (&) satisfying the following

conditions:

1) S, (G) is dense in the space L}, (G).

2) Sy (G) is a Banach algebra under some norm ||.||g, and invariant
under translations.

3) For each £ € 5., (Q), Ly Slls, < w(y) [Iflls, for all y € G.

4) Given any f € 5% (G) and € > 0 then there exists a neighbourhood
U of the unit element e of G such that ||L,f — f”Sw <cforall ye U.

5) For all f € Sy (G), ”f”l,w < ”f”Sw'

7 Suppose that w satisfies (BD). Let .9, (G') be a Banach ideal in the space
LY (G) and (eq),er be a bounded approximate identity of the space I (G) with
compactly supported Fourier transforms. Define

Ms, = {;L € M(w) I [|pe * ecv”sw < c”} ,

where ¢, is a constant depending on the measure p. It is easy to show that
. . . R a
Mg, is a vector space on the field of complex numbers €' and the function

, llpe * ealls,
llellass, = sup {——

lleall w

is a norm on Mg, .

Proposition 3. Let w satisfies (BD) and S, (G) be an essential ideql
Then the space Mg, is uniquely defined as independent of approzimate i(lentity.

Proof. Let (¢a)ses and (v8)g¢, be two bounded approximate identities
with compactly supported Fourier transformations of the space L1 (@). Then,
there exist My, Ma > 0 such that |lua|l; , < M; and llvslly ., < Mz for ever
a € [ and g € J. We define y

(18)  Ms, (G)={pe M) | lln*ualls, <cu for all e},
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and
(19) A={peM@w) | I % vglls, < Cl, for,all fe .},
We also define the following norms on these spaces:
llee * wall
(20) lillaz, = sup § =——% ¢, 4w € Ms,
v a llwally,w
and
Il * vpll g
(21) lully = sup § HSu 4y e,
A llvslly,w

Let any p € Mg, be given. Then ||u+ualls, < C, for all @ € I. Hence,
Mk Uy € 5y (G) and

*
(22) lillygy, = sup { 1e*ells L o
o = Tl

Take a fixed element Sy € J. Since S, (G) is a Banach ideal in L), (G), then
Mo* Uy ¥ Vg, € 5y (G) for all @ € I and we write

(23) llke * o ¥ vpy = ¥ vgolls,, < el llua * va, — vgolls,

by Lemma 2. Also, since uq,vg € Fow, We get uq,vg € Sy (G) for all a € I and
B € J by Lemma 1. In the inequality (23) using the facts that v, € Sy (G) and
Sw (G) is an essential ideal, then for given € > 0 there exists ag € I such that

(24) s vaxvgy = pxvgolls, < llallyllue * va — vgolls, < elllly,

for all @ > ao.Since 5, (G) is a Banach space, we have p * vg, € Sw(G) and
moreover, we write

e * 0o s, < limllp * e % g5, < lim (Il % walls, logolly ) < MaCi = C.
(25)

Since (25) is satisfied for all 8 € J, hence u * vg € Sy (G) and ||p * ”ﬂ”s < Cu'
Thus ¢ € A and we have Ms, C A. Similarly, it can be shown that A C Ms,,.
Hence A = Ms,,. Also if we use the inequality (23), write

e * vgolls, < Nk * vy — po % ue * vgollg,

Hlp* ua * vgolls, < ellully + Ik * ualls, vsolly
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for all @ > ag. That means

(26) i * vgolls, < N1+ ualls, 100l

for all a > ag. Since this inequality holds for all 8 € J, we have

i * el
e *vplls, < Nl * ualls, Vsl o = 0l 0 = llttally
! ”ua“l,w ’
| * ug
(27) < My gl sup{ A2 el |
Y lwall
Hence I I
B *Ugllg
05 < My ||
”vﬁul,w ” ”M_g"J
and thus
Il * vgll
(28) lullg = supq ———* ¢ < My || :
A p; “vﬂ“Lw “ “lew

Similarly, it is also easy to show the inequality |ju||5,, < My ||p||4. From this
inequality and (28) we write

1
(29) ;e < Nkl < Mzl -

Therefore the norms ||.|| 4 and ||.||5s, ~are equivalent. This completes the proof.
=

Theorem 4. Assume that w satisfies (BD) and S, (G) is an essential
ideal in L} (G). The followings are equivalent:

)T eM(LL(G),S(G)),

2) There exists a unique p € Ms,, such that T f = p+f forall f € LY (@).

Moreover, the spaces M (L., (G), S8, (G)) and Ms, are homecmorphic.

Proof. Let us assume the existence of an element p € Mg, , such that
Tf = px fforevery f € L}, (G). Let(ea) ey is @ bounded approximate identity
with compactly supported Fourier transformation of the space L} (G) and C =
su}; []ea||1,w. Since p € Mg, we have p+ ey € Sy (G) for all @ € [.Define the
a€

net (go)aer> Where go = p* €q * €q * f. Since Sy, (G) is a Banach ideal LL (@),
then we have g, € Sy (G) for all @ € I. Moreover, we write

||9a_9ﬁ”5w = ”p*ea*ea*f—u:'sep*eﬁ*fnsw
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= l(*ea+n*ep)*(earf—ep*flg,
<l xea+prepllg, llea® f—esx fll,, < 2cullea* f —epx flly,
(30) <2¢cullea® f = flliwt2culles* f - f“l,w'

Since (€q)qey is @ bounded approximate identity in the space L} (@), the right
side of the inequality (30) goes to 0. Thus (ga)ses is @ Cauchy net in the space
Sw (G) and there exists g € S, (G) such that

(31) lim|lga — gll1,, < limlga = glls, =0
Also using the inequality
9o = p* flliw < Nlga — pxea* fllyw + e *ea* f—px fll

= |lu*eaxeax f—pxea flli,+lu*eas S —pxfllhy

we obtain
(32) lim|lga — p* fll1,0 = 0

From (31) and (32), it is also obtained that ¢ = pu f = T'f € Sy, (G)). Moreover,
from the inequality

ITflls,, = llk* flis, = llglls, = limllgalls, = lim|lp  ea * €a * flls,
- [l * ealls
= m (”# * €alls, llea * flll,w) = lim | =" lleall1 u llea * fll1,0
o\ lleallw
llp * ealls,, . ,
< e sup— 2 limllea * flly,, < Collillagg, 1111w
o llealli @ w
we get
1T flls
(33) 17| = sup==—=* < ¢ lull s, -
f#0 ”f“l,'w Msu

Thus the operator 7' is continuous. Since L, (f* p) = Ly f % p for every f €
Ll (G) and z € G, we have

(34) (LeT) (f) = Lo (Tf) = T (L f) = (T L) (f) -

That means T € M (LY, (G), 5w (G)).

Conversely, any T € M (L, (G),Sw(G)). Since the operator T' is con-
tinuous, there exists @ > 0 such that ||T'f||s, < a||fll;,, for all f € L}, (G). If
we use the inequality [|.||; ,, < Ills,» we write |Tfl, ,, < [|ITflls, < allflly -
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Thus we have T € M (L (G)). But for given T € M (L}, (G)) there exists
i € M (w) such that Tf = p* f for all f € L], (G) , [7]. Since ey # 0 for every

a € I, then we write i i
K*eqlls,
(35) lellars, = supy =7 —=
v ”ealll,w

o flls, | . fUTSls, |
i‘;‘é{ 17l }‘ T { 1l } = 1l

Also since the operator T' is bounded, we obtain p € Msg,. Finally from (33)
and (35) the spaces M (L (G), Sw (G)) and Mg, are homeomorphic. ™

IA

Theorem 5. Assume that w satisfies (BD). If Sy, (G) is an essential
normed ideal and T € M (S, (G)), then there exists a unique pseudo measure
o€ A*(G) suchthatTf=ox*f forall feS,(G).

Proof. It is easy to see the space S, (G) is an abstract Segal algebra,
on L. (G). Then the regular maximal ideal space of S, (G) and L (G) are
homeomorphic (see Theorem 2.1, [1]). Since w satisfies (BD), the regular max-
imal ideal space of L}, (G) is homeomorphic to the dual group G (see p.15 and
Theorem 2.11, [3]). Then the regular maximal ideal space of S, (G) is dual
group G. Also since L. (G) is a without order algebra under convolution, and
Sw (G) is a subalgebra of L., (G), then Sy, (G) also is a without order algebra,
under convolution. Hence S, (G) is a without order commutative Banach al-
gebra. Let T' € M (S, (G)) be given. Then, for given any T € M (S, (@),
there exists a unique bounded continuous function ¢ defined on G such that
(TH" = = ¢ f forall f € S, (G) (see Theorem 1.2.2, [9]). Let f € Fy, be given.
Then we get f € Sy (G) by Lemma 1. Moreover, since T € M (5, (G)), we have
TfeS,(G)cC L) (G) Also since fhas compact support and ¢ is continuous
function, then (T f) = f has compactly support. Therefore T f € Fp . Using

the inclusion C¢ (G’) C Iy (G’) we obtain

(36) Ruwc{fen@|fen(G)}=n@G.

Also from the Fourier Inversion Theorem, A;(G) C A(G) and hence, Fy,, C
A(G). It is known that Fp,, is dense in the space A(G), [8]. Let us define a
function L from the space Fp,, to the field of complex numbers C as L (f) =
T f(0). It is easy to see that T is linear. Let f,g € Fp,, and € > 0 be given. If
we choose 6§ = 5/”<p”°o and ||f — g||4 < §, then we have

IL(f) = L(9)] = ITf (0) = Tg (0)] < ITf - Tg]l., < ”Tf ~ 7y

1
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& P €
@) =|le 7 - 0dl|, < el ||£ - 3|, = lelloo 1S = glls < llplloo o= = ¢
: : lellen

Thus the function L is continuous. So, the linear functional L defined on Fg .,
can be extended uniquely to a continuous linear functional on A(G). Hence,
there exists a pseudo-measure o € A*(G) such that L(f) = Tf(0) = (f,5).
Thus we find T'f = o * f for all f € Fp,. Now we will show the uniqueness of
o. Assume that Tf = o x f = B« f,for a,8 € A*(G). If we take the Fourier

transformation of ‘both sides, we have & f =4 f and hence (& - B) f = 0.
On the other hand, since w satisfies (BD), then F (L, (G)) = F, is a Wiener
algebra (see [13]). From this, for given any = € G, we can find at least one
f € F, such that f(z) # 0.Thus from the equality (& - B) (z) f(z) = 0 we
write (& —ﬁ) (z) = 6(2) — B(z) = 0 and hence &(z) = B(x). Since this

equality is true for all z € G, then we have & = . Finally from the uniqueness
of Fourier transformation, it is obtained that o = 8.

Now, we shall show that the T'f = o * f is satisfied for all f € Sy (G).
Let us take any f € Sy (G). Since w satisfies (BD), then L. (G) has a bounded
approximate identity (e ), @ € I with compactly supported Fourier transforma-
tion. Hence eq * f € Fo,w and T (eq * f) = 0 * (eq * f) for every f € Sy (G).
From this result, we have

17 (ea * f) =T (s * Plls, STl llea * f — s fl|5,

< ITl {llea* £ = Flls, +lleg * £ = flls, }

for all a,8 € I. Since S, (G) is an essential ideal, the right side of the above
inequality goes to 0 by Corollary 15.3 in [4]. Thus {o * (eq * f)} becomes a
Cauchy net in the space S, (G). Also since the space S, (G) is a Banach space,
there exists a function F € Sy, (G) such that

(38)  Timllo * (ea * f) ~ Flly,, < liml|o * (ea * f) = Fllg, = 0.

Moreover, if (38) and the fact that (es),cs is an approximate identity is used
in the inequality

IF = 0% fllip < I1F =0 % (ea * il + llo* (ea * f) = 0 fll10

we obtain F' = o * f. Also we write

(39) ITf - o x(ea* s, =ITf =T (ea* Nlls, S NTNIS — €a * flls,,-
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Consequently, since Sy, (G') is an essential ideal from (39), we have
(40) lién”Tf —o#*(ea* flls, =0.

From (39), (40) and the uniqueness of limit, it is concluded that Tf = F' = ox f,

3. Multipliers from L (G) to reflexive 5, (G)

By the techniques of proofs used in Lemma 1 and Lemma 2 in Ouyang
[11], we easily proof the following two lemmas.

Lemma 6. Let Sy, (G) be a reflexive on the locally compact Abelian
group G. Suppose T € M (LL (G), 5w (G)) and (uq),e; is a bounded approz-
imate identity of L., (G). Then:

1) For each f € L, (G) we have limTug + f =Tf in (Sw (G), Ils,) -

2) There exists a function m € S, (G) such that for each o € Su (@)
(the dual space of S, (G) ) we have

libn (Tug,o0) = (m, o),

where (T'ug) is a subnet of (Tuy) .

Lemma 7. Let Sy, (G) be a reflexive on the locally compact Abelian
group G. Assume T € M (L% (G),S54(G)) and (Ua)qer be a bounded approg-
imate identity of L} (G). Then, for each f € Cc (G) and each m € S, (@),

¢ o= 9(@) = (LT () [ (2),0)
VU :z—V¥(z)=(Lym(.)f(x),0), o€ S,(G)
are the elements of Cc (G).

Theorem 8. Let S, (G) be reflexive and (uq) ey be bounded approai.
mate identity in L., (G). Then for every T € M (LL (G), S5, (G)), there ezists
a unique function m € Sy (G), such that Tf=mx f forall fe LL(G).

Moreover, the correspondence betweenT' and m defines a homeomorpism

from M (L%, (G),Sw(G)) onto Sy (G).

Proof. The first part of the theorem is easily proved using Lemmas 6
and 7, by the technique of the proof used in Proposition 2.2, [11].
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Next, we prove that M (L%, (@), Sw (G)) and Sy (G) are homeomorphic.
Suppose T' € M (LL (G), Sw (G)). Since Sy, (G) is Banach ideal in L., (G), from
the inequality

(41) ITflls, = llm* flls, < lmlls, 17110,
we obtain
71 < llmlls, -
Also,
(42) lmlls, < lmliTuglls, < lmlTlusll,, < CIT.

Combining these results, we obtain
17N < lImlls,, < ellTl-
Thus M (LL (G), Sw(G)) and Sy, (G) are homeomorphic. L]

Example 1. Let G be a locally compact Abelian group (non-discrete,
non-compact) and w be a weight function (Beurling’s weight function) on G.
Tor 1 < p < o0, we set

@) a={seri@ |fem(6)} ama Wia= 1+ |7

It is a Banach convolution algebra and || f||, ,, < [|f]|4 for all f € A, [5],
[6]. If w satisfies (BD), then A is dense in L} (G), [5]. It is also known that A
is translation invariant and the function y — L, f is continuous from G into A,

[5], [6]. Thus if w satisfies (BD), A is a S, (G) space.

Example 2. Let G be a locally compact Abelian group (non-discrete,
non-compact) and w be a weight function (Beurling’s weight function) on G.
For 1 < p < 00, we set B = Ly, (G) N L, (G) and Iy aze, = [0 + -l
It is known that B is a Banach convolution algebra, translation invariant and
translation operator is continuous. Also, if w satisfies (BD), it is known that B
is dense in Ly, (G) and ||f||;,, < £ 1l 2,z (Oztop-Gurkanli, [12]). Thus, if w
satisfies (BD), Bis a S, (G) space.
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