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Let X be a Banach space, K a non-empty closed subset of X and let T be a (non-
self) mapping of K into X. A fixed point theorem is proved for mappings which satisfy the
contractive type condition (1) below, and a fixed point is approximated by an process. The
result of this paper is a generalisation of the corresponding theorem of Assad, Rhoades and
Cirié.

AMS Subj. Classification: 26A18

Key Words: fixed point, Cauchy sequence, Banach space

*

In many applications a function of a closed subset K of a Banach space
X is not a selfmapping of K into K but into X, or test for T(K) C K is
complicate. So it is of interest to investigate functions for which T'(K) C K
may be reduced to T(0K) C K (JK - the boundary of K). In this paper we
shall prove a fixed point theorem for such mappings. The result proved in this
paper is a generalisation of the corresponding theorem of Assad [1], Rhoades [3]
and Cirié [2].

Rhoades [3] investigated a class of mappings T of K into X which satisfy
the following condition:

There exists a constant h, 0 < h < 1, such that, for each z,y € K,
(I) d(Tz,Ty) < hmax{d(z,y)/2,d(z,Tz),d(y, Ty),[d(z,Ty) + d(y, T=)l/q}

where ¢ is any real number satisfying ¢ > 1 + 2h.
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He proved that if K is closed and if T on K satisfies (I) and in addition
T(OK) C K, then T has a unique fixed point in K. Cirié¢ (2] slightly improved
this result.

We remark that condition (I) implies the following condition:

d(Tx,Ty) < hy max{d(z,y)/2,d(z,T),d(y, Ty),[d(=,Ty) + d(y, Tx)]/3},

with hy = 3h/(1 + 2h).

The purpose of this paper is to extend the results of Rhoades [3] and Ciri¢
[2] to a class of non-self mappings of &' which satisfy the following contractive
type condition:

There exists a constant h, 0 < h < 1, such that, for each z, y€ K,

(1) d(Te,Ty) < hmax{d(z,y)/2,d(z, Tz),d(y, Ty), m(z,y), M(z,4)/2},

where
m(z,y) = min{d("v’ Ty), d(y, Tz)},

M(z,y) = max{d(z,Ty),d(y,T2)}.

In the proof of our theorem we shall use the fact that, if 2 € K and
y € K, then there exists a point z € JK such that

d(z,z) + d(z,y) = d(z, y).
Our main result is the following theorem.

Theorem 1. Let X be a Banach space, K a non-empty closed subset
of X and T : K — X a mapping satisfying (1) on K and

(a) for each z € 0K, Tz € K.
Then T has a unique fized point in K.

Proof. Let zg € 0K. We shall construct a sequence {z,} as follows
Since Txg € K (by (a)), set 1 = Txo. Consider now Tay. If Ta, € K, set
29 = Tay. If T2y € K, choose x5 € 0K so that

d((L‘l,.'L‘g) + (l((L‘g,T.’L‘l) = d(wl,T:vl).

Now, if Tz, € K, set @3 = Tx,. If not, choose 23 € OK so that d(a;2,a;3) +
d(x3,Tw2) = d(x2,Txz). Continuing in this manner, we obtain a sequence {z,}
in I which can be devided in two separated classes A and B, where "

A={z; € {zn}:2; =Tz; 1},
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B={x;e{en}:ai# Ta;—q,2; € OK
and  d(xi—1,2i) +d(2;, Twi—q) = d(2i—1,Twi—1)}.

Note that if z; € B, then 2;41 and z;—1 belong to A by condition (a). For if
we suppose that v;—1 ¢ A, then v;—y € B C 0L, and so by (a), Ta;—1 € K.
By definition of {z,}, we now have T'z;_; = @; and hence x; € A, which is in
contradiction with z; € B.

Now we will to estimate d(@,,®,41). For simplicity, set d; = d(x;,¢;41)
and suppose that d; > 0 for all i € N (otherwise, @; is a fixed point of T').
Actually, we have three cases.

Case I. &y, 2p41 € A. From (1) we have

d(wna $n+1) . d(Twn—l ) T:Ln)

(2) < hmax{d,_1/2,dp_1,dp, m(xp_1,), M(2p-1,2,)/2}.

Since
m(wn—l,a"n) < d(:l:n, Txn—l) = d(:l,‘n, a"n) =0,

M(2n—1,22) = d(@n-1,%ny1) < dney + d, < 2max{d,_1,d,},
from (2) we have d,, < hmax{d,—1,d,} and hence

(3) d(wn, -'L'n+1) < hd(mn—l,l‘n)-

Case Il. ©y € A, 2py1 € B. Then d(2p, ¥pp1)+d(ppr, T2n) = d(xp, Tar)
and hence d, < d(zp,Txy,) = d(T2p—1,T2,). From (1) and by the triangle in-
equality,

d(Twn-1,T2,) < hmax{dn-1/2,dn-1,dp,0,(dp-1 + dy)/2}.
Hence
(4) d(mm m'n+1) < hd(xn-—l, mn)-

Case III. &, € B, x,41 € A. Since z, is a convex combination of 2,_1
and T'w,_ it follows that

(5) d(.’L‘”, $n+1) < ma‘x{d(T:vn—-l , wn-}-l), d(wn—la :L'n-{-l)}-
Since @,—1 and 2,41 belong to A, from (5) we have

(6) d(@pn, ny1) < max{d(Txp—1,Ty),d(Txn-2,Tay)}.
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From (1),
d(Tzp—1,T2n) < hmax{d,_1/2,d(zpn-1,Tx,_1),d,,

(7) (s T 1) s 8B (s Tt —1 )5 B By, Tz,)}/2.

Since T@,_2 = x,_1, similarly as in Case II, we obtain

(8) d(zp-1,T2p-1) =d(Txp_2,Tan_1) < hd(zn_2,2,_1) = hd,_,.
Further, using (8) and the triangle inequality, we have

(9) d(wn7Txn—l) = d(:vn—l’Tmn—l) - dn—l < hdn—Z,

(10) d(zn-1,Ten) < d(Zn-1,2n) +d(2n, TT0) = dp_1 +dn < 2max{d,_y,d,}.
Thus, using (8), (9) and (10), from (7) we obtain
(11) d(Tzn-1,Tz,) < hmax{dn_3,dn_1,d,}.

Again from (1) we have

d(Tzp—2,Tz,) < hma.x{d(wn_g,:vn)/2,dn__2,dm

(12) dn—1,max{d,_1,d(x,_2,T2,)}/2}.
Since by the triangle inequality
d(Tp—2,2%n) < dn2 + dy—1 < 2max{d,_s,d,_,};
d(zp-2,T2n) < d(Tn2,TTn-2) + d(T2p_2, Tx,)
< 2max{dn_2,d(Tz,—2,Tz,)},
from (12) we obtain
(13) d(Tzy—2,Tz,) < hmax{d,_,,d,_1,d,}.
By (11) and (13), the inequality (6) becomes
d(zn,Tnt1) < hmax{d,_,,d,, dn—2}.
Hence, as d, < hd, implies d,, = 0,

(14) d(x'm xﬂ+l) S h max{(l(w”_g, LTn—-1 )a d(wn—la ‘Ln)}
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Since (3) and (4) imply (14), we conclude that in all cases (14) holds.
By induction it is easily shown that for n > 1,
d(2n, Tny1) < ROY2 max{d(zo, x1), d(z1,22)}.

Now, for m > n > k we have

00
d((Ln,'Bm SZ ((L“ 1+1
i=k

(15) < (=121 = B2y max{d(zo, 1), d(z1, 22)}

Hence we conclude that {z,} is a Cauchy sequence: hence convergent. Call the
limit w. There exists an infinite subsequence {a;} of {x,} such that x;4, € A.
By the triangle inequality and from (1) we obtain

d(u,Tu) < d(u,zig1) + d(T2;, Tu) < d(u,ziq1)
+ hmax{d(u,x;)/2,d;,d(u,Tu),d(u, z;y1),
max{d(z;, Tu),d(u,z;11}/2}.

Taking the limit of the above as n — co we obtain d(u,Tu) < hd(u,Tu), which
implies Tw = u. From (15) we easy get an estimate of approximation of fixed
point. Taking the limit of (15) as m — oo we obtain

d(u,2,) < (K™ D/2/(1 = b2y max{d(zo, z1), d(x1, ©2)}

Condition (1) ensures that u is the unique fixed point of T'. o

Remark. Our theorem is a substantial generalization of the correspond-
ing theorems of Assad [1], Ciri¢ [2] and Rhoades [3]. We observe that if a, b are
non-negative reals, which for example, a < b, then

(a +0)/3 = 2/3min{a,b}, if a=0b,

(a+b)/3 ~ 2/3[max{a,b}/2], if a=0.
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