Mathematica Balkanica

New Series Vol. 16, 2002, Fasc. 1-4

On H-Fuzzy Differentiation

George Anastassiou

Dedicated to the 70th anniversary of the famous Bulgarian mathematician, Bl. Sendov

The concept of H-fuzzy differentiation is discussed thoroughly in the univariate and multivariate cases. Basic H-derivatives are calculated and then important theorems are established on the topic, such as, the H-mean value theorem, the univariate and multivariate H-chain rules, and the interchange of the order of H-fuzzy differentiation. And finally is given the multivariate H-fuzzy Taylor formula.

AMS Subj. Classification: 26E50

 $Key\ Words$: fuzzy real analysis, H-fuzzy derivative, fuzzy-Riemann integral

0. Introduction

Fuzzyness was first introduced in the celebrated paper [12]. For the notion of H-fuzzy derivative, see [7] and [9]. First we give some background from Fuzzyness, motivation and justification, necessary for the results to follow. In Propositions 1–4 we calculate basic H-fuzzy derivatives. In Lemmas 1 and 2 we give results on fuzzy continuity, and in Propositions 5 and 6 we give basic properties of H-fuzzy differentiation. Then come the main results.

Theorem 1 is on H-Fuzzy Mean Value Theorem, Lemmas 3, 4 and 5 are auxiliary on fuzzy convergence and fuzzy continuity, Theorem 2 is on univariate H-fuzzy chain rule, and Theorem 3 is on multivariate H-fuzzy chain rule.

We conclude with Theorem 4 on the interchange of the order of H-fuzzy differentiation, and the development of the multivariate H-fuzzy Taylor formula with integral remainder, see Theorem 5 and Corollary 1.

1. Background

We start with the following

Definition A (see [9]). Let $\mu: \mathbb{R} \to [0,1]$ with the following properties:

- (i) is normal, i.e., $\exists x_0 \in \mathbb{R}$: $\mu(x_0) = 1$.
- (ii) $\mu(\lambda x + (1 \lambda)y) \ge \min\{\mu(x), \mu(y)\}, \forall x, y \in \mathbb{R}, \forall \lambda \in [0, 1] \ (\mu \text{ is called a convex fuzzy subset}).$
- (iii) μ is upper semicontinuous on \mathbb{R} , i.e., $\forall x_0 \in \mathbb{R}$ and $\forall \varepsilon > 0$, \exists neighborhood $V(x_0)$: $\mu(x) \leq \mu(x_0) + \varepsilon$, $\forall x \in V(x_0)$.
- (iv) The set $\overline{\operatorname{supp}(\mu)}$ is compact in \mathbb{R} (where $\operatorname{supp}(\mu) := \{x \in \mathbb{R}; \, \mu(x) > 0\}$).

We call μ a fuzzy real number. Denote the set of all μ with $\mathbb{R}_{\mathcal{F}}$.

E.g., $\mathcal{X}_{\{x_0\}} \in \mathbb{R}_{\mathcal{F}}$, for any $x_0 \in \mathbb{R}$, where $\mathcal{X}_{\{x_0\}}$ is the characteristic function at x_0 .

For $0 < r \le 1$ and $\mu \in \mathbb{R}_{\mathcal{F}}$ define $[\mu]^r := \{x \in \mathbb{R}: \ \mu(x) \ge r\}$ and

$$[\mu]^0 := \overline{\{x \in \mathbb{R}: \mu(x) > 0\}}.$$

Then it is well known that for each $r \in [0,1]$, $[\mu]^r$ is a closed and bounded interval of \mathbb{R} . For $u, v \in \mathbb{R}_{\mathcal{F}}$ and $\lambda \in \mathbb{R}$, we define uniquely the sum $u \oplus v$ and the product $\lambda \odot u$ by

$$[u \oplus v]^r = [u]^r + [v]^r, \quad [\lambda \odot u]^r = \lambda [u]^r, \quad \forall r \in [0, 1],$$

where $[u]^r + [v]^r$ means the usual addition of two intervals (as subsets of \mathbb{R}) and $\lambda[u]^r$ means the usual product between a scalar and a subset of \mathbb{R} (see, e.g., [9]). Notice $1 \odot u = u$ and it holds $u \oplus v = v \oplus u$, $\lambda \odot u = u \odot \lambda$. If $0 \le r_1 \le r_2 \le 1$ then $[u]^{r_2} \subseteq [u]^{r_1}$. Actually $[u]^r = [u_-^{(r)}, u_+^{(r)}]$, where $u_-^{(r)} < u_+^{(r)}, u_-^{(r)}, u_+^{(r)} \in \mathbb{R}$, $\forall r \in [0, 1]$.

Define

$$D: \mathbb{R}_{\mathcal{F}} \times \mathbb{R}_{\mathcal{F}} \to \mathbb{R}_+ \cup \{0\}$$

by

$$D(u,v) := \sup_{r \in [0,1]} \max\{|u_{-}^{(r)} - v_{-}^{(r)}|, |u_{+}^{(r)} - v_{+}^{(r)}|\},$$

where $[v]^r = [v_-^{(r)}, v_+^{(r)}]; u, v \in \mathbb{R}_{\mathcal{F}}$. We have that D is a metric on $\mathbb{R}_{\mathcal{F}}$. Then $(\mathbb{R}_{\mathcal{F}}, D)$ is a complete metric space, see [9], with the properties

$$D(u \oplus w, v \oplus w) = D(u, v), \quad \forall u, v, w \in \mathbb{R}_{\mathcal{F}},$$

$$D(k \odot u, k \odot v) = |k|D(u, v), \quad \forall u, v \in \mathbb{R}_{\mathcal{F}}, \ \forall k \in \mathbb{R},$$

$$D(u \oplus v, w \oplus e) \leq D(u, w) + D(v, e), \quad \forall u, v, w, e \in \mathbb{R}_{\mathcal{F}}.$$

Let $f, g: \mathbb{R} \to \mathbb{R}_{\mathcal{F}}$ be fuzzy real number valued functions. The distance between f, g is defined by

$$D^*(f,g) := \sup_{x \in \mathbb{R}} D(f(x), g(x)).$$

On $\mathbb{R}_{\mathcal{F}}$ we define a partial order by " \leq ": $u, v \in \mathbb{R}_{\mathcal{F}}$, $u \leq v$ iff $u_{-}^{(r)} \leq v_{-}^{(r)}$ and $u_{+}^{(r)} \leq v_{+}^{(r)}$, $\forall r \in [0, 1]$.

We need

Lemma 2.2 ([3]). For any $a, b \in \mathbb{R}$: $a, b \ge 0$ and any $u \in \mathbb{R}_{\mathcal{F}}$ we have

$$D(a \odot u, b \odot u) \leq |a - b| \cdot D(u, \tilde{o}),$$

where $\tilde{o} \in \mathbb{R}_{\mathcal{F}}$ is defined by $\tilde{o} := \mathcal{X}_{\{0\}}$.

Lemma 4.1 ([3]).

- (i) If we denote $\tilde{o} := \mathcal{X}_{\{0\}}$, then $\tilde{o} \in \mathbb{R}_{\mathcal{F}}$ is the neutral element with respect to \oplus , i.e., $u \oplus \tilde{o} = \tilde{o} \oplus u = u$, $\forall u \in \mathbb{R}_{\mathcal{F}}$.
- (ii) With respect to \tilde{o} , none of $u \in \mathbb{R}_{\mathcal{F}}$, $u \neq \tilde{o}$ has opposite in $\mathbb{R}_{\mathcal{F}}$.
- (iii) Let $a, b \in \mathbb{R}$: $a \cdot b \ge 0$, and any $u \in \mathbb{R}_{\mathcal{F}}$, we have $(a+b) \odot u = a \odot u \oplus b \odot u$. For general $a, b \in \mathbb{R}$, the above property is false.
- (iv) For any $\lambda \in \mathbb{R}$ and any $u, v \in \mathbb{R}_{\mathcal{F}}$, we have $\lambda \odot (u \oplus v) = \lambda \odot u \oplus \lambda \odot v$.
- (v) For any $\lambda, \mu \in \mathbb{R}$ and $u \in \mathbb{R}_{\mathcal{F}}$, we have $\lambda \odot (\mu \odot u) = (\lambda \cdot \mu) \odot u$.
- (vi) If we denote $||u||_{\mathcal{F}} := D(u, \tilde{o}), \forall u \in \mathbb{R}_{\mathcal{F}}, \text{ then } ||\cdot||_{\mathcal{F}} \text{ has the properties of a usual norm on } \mathbb{R}_{\mathcal{F}}, \text{ i.e.,}$

$$||u||_{\mathcal{F}} = 0 \quad iff \ u = \tilde{o}, \ ||\lambda \odot u||_{\mathcal{F}} = |\lambda| \cdot ||u||_{\mathcal{F}},$$
$$||u \oplus v||_{\mathcal{F}} \le ||u||_{\mathcal{F}} + ||v||_{\mathcal{F}}, \ ||u||_{\mathcal{F}} - ||v||_{\mathcal{F}} \le D(u, v).$$

Notice that $(\mathbb{R}_{\mathcal{F}}, \oplus, \odot)$ is *not* a linear space over \mathbb{R} , and consequently $(\mathbb{R}_{\mathcal{F}}, \|\cdot\|_{\mathcal{F}})$ is *not* a normed space.

We need

Definition B (see [9]). Let $x, y \in \mathbb{R}_{\mathcal{F}}$. If there exists a $z \in \mathbb{R}_{\mathcal{F}}$ such that x = y + z, then we call z the H-difference of x and y, denoted by z := x - y.

Definition 3.3 (see [9]). Let $T := [x_0, x_0 + \beta] \subset \mathbb{R}$, with $\beta > 0$. A function $f: T \to \mathbb{R}_{\mathcal{F}}$ is H-differentiable at $x \in T$ if there exists a $f'(x) \in \mathbb{R}_{\mathcal{F}}$ such that the limits (with respect to metric D)

$$\lim_{h \to 0^+} \frac{f(x+h) - f(x)}{h}, \quad \lim_{h \to 0^+} \frac{f(x) - f(x-h)}{h}$$

exist and are equal to f'(x). We call f' the derivative or H-derivative of f at x. If f is H-differentiable at any $x \in T$, we call f differentiable or H-differentiable and it has H-derivative over T the function f'.

The last definition was given first by M. Puri and D. Ralescu [7].

E x a m p le. Let $f: \mathbb{R}_+ \to \mathbb{R}_{\mathcal{F}}$ be such that for any $\lambda, \mu \geq 0$ it holds

$$f(\lambda x + \mu y) = \lambda \odot f(x) \oplus \mu \odot f(y), \quad \forall x, y \in \mathbb{R}_+.$$

Then the *H*-derivative $f'(x) = f(1), \forall x \in \mathbb{R}_+$.

Proof. By $f(x+h) = f(x) \oplus f(h)$, that is the H-difference

$$f(x+h) - f(x) = f(h) \in \mathbb{R}_{\mathcal{F}}.$$

Thus

$$\frac{f(x+h) - f(x)}{h} = f(1), \quad h > 0.$$

Similarly, $f(x) = f(x - h) \oplus f(h)$, for h > 0 small, that is the *H*-difference $f(x) - f(x - h) = f(h) \in \mathbb{R}_{\mathcal{F}}$. Hence

$$\frac{f(x) - f(x - h)}{h} = f(1).$$

But

$$\lim_{h \to 0^+} D(f(1), f(1)) = 0.$$

Clearly for f'(0) we take the right-hand side H-derivative.

We need also a particular case of the Fuzzy Henstock integral $(\delta(x) = \frac{\delta}{2})$ introduced in [9], Definition 2.1.

That is,

Definition 13.14 (see [5], p. 644). Let $f:[a,b] \to \mathbb{R}_{\mathcal{F}}$. We say that f is Fuzzy-Riemann integrable to $I \in \mathbb{R}_{\mathcal{F}}$ if for any $\varepsilon > 0$, there exists $\delta > 0$ such that for any division $P = \{[u,v];\xi\}$ of [a,b] with the norms $\Delta(P) < \delta$, we have

$$D\left(\sum_{P} {}^{*}(v-u)\odot f(\xi), I\right) < \varepsilon,$$

where \sum^* denotes the fuzzy summation. We choose to write

$$I := (FR) \int_{a}^{b} f(x) dx.$$

We also call an f as above (FR)-integrable.

We are based on the following fundamental theorem of Fuzzy Calculus:

Corollary A ([1]). If $f:[a,b] \to \mathbb{R}_{\mathcal{F}}$ has a fuzzy continuous H-derivative f' on [a,b], then f'(x) is (FR)-integrable over [a,b] and

$$f(s) = f(t) \oplus (FR) \int_t^s f'(x) dx$$
, for any $s \ge t$, $s, t \in [a, b]$.

Note. In Corollary A when s < t the formula is invalid! since fuzzy real numbers correspond to closed intervals etc.

We need also

Lemma 1 ([1]). If $f, g: [a, b] \subseteq \mathbb{R} \to \mathbb{R}_{\mathcal{F}}$ are fuzzy continuous (with respect to metric D), then the function $F: [a, b] \to \mathbb{R}_+ \cup \{0\}$ defined by F(x) := D(f(x), g(x)) is continuous on [a, b], and

$$D\left((FR)\int_a^b f(u)du, (FR)\int_a^b g(u)du\right) \le \int_a^b D(f(x), g(x))dx.$$

Lemma 2 ([1]). Let $f:[a,b] \to \mathbb{R}_{\mathcal{F}}$ fuzzy continuous (with respect to metric D), then $D(f(x), \tilde{o}) \leq M$, $\forall x \in [a,b]$, M > 0, that is f is fuzzy bounded. Equivalently we get $\chi_{-M} \leq f(x) \leq \chi_M$, $\forall x \in [a,b]$.

Lemma 3 ([1]). Let $f:[a,b]\subseteq\mathbb{R}\to\mathbb{R}_{\mathcal{F}}$ be fuzzy continuous. Then

$$(FR)$$
 $\int_{a}^{x} f(t)dt$ is a fuzzy continuous function in $x \in [a, b]$.

Lemma 4 ([1]). Let $f:[a,b] \subset \mathbb{R} \to \mathbb{R}_{\mathcal{F}}$ fuzzy continuous, $r \in \mathbb{N}$. Then the following integrals

$$(FR) \int_{a}^{s_{r-1}} f(s_r) ds_r, (FR) \int_{a}^{s_{r-2}} \left(\int_{a}^{s_{r-1}} f(s_r) ds_r \right) ds_{r-1},$$

$$\dots, (FR) \int_{a}^{s} \left(\int_{a}^{s_1} \cdots \left(\int_{a}^{s_{r-2}} \left(\int_{a}^{s_{r-1}} f(s_r) ds_r \right) ds_{r-1} \right) \cdots \right) ds_1,$$

are fuzzy continuous functions in $s_{r-1}, s_{r-2}, \ldots, s$, respectively. Here $a \le s_{r-1} \le s_{r-2} \le \cdots \le s \le b$.

Additionally we mention

Lemma 5 ([2]). Let $f:[a,b] \to \mathbb{R}_{\mathcal{F}}$ have an existing H-fuzzy derivative f' at $c \in [a,b]$. Then f is fuzzy continuous at c.

We need the Fuzzy Taylor formula

Theorem 1 ([1]). Let $T := [x_0, x_0 + \beta] \subset \mathbb{R}$, with $\beta > 0$. We assume that $f^{(i)}: T \to \mathbb{R}_{\mathcal{F}}$ are H-differentiable for all $i = 0, 1, \ldots, n-1$, for any $x \in T$. (I.e., there exist in $\mathbb{R}_{\mathcal{F}}$ the H-differences $f^{(i)}(x+h) - f^{(i)}(x)$, $f^{(i)}(x) - f^{(i)}(x-h)$, $i = 0, 1, \ldots, n-1$ for all small $h: 0 < h < \beta$. Furthermore there exist $f^{(i+1)}(x) \in \mathbb{R}_{\mathcal{F}}$ such that the limits in D-distance exist and

$$f^{(i+1)}(x) = \lim_{h \to 0^+} \frac{f^{(i)}(x+h) - f^{(i)}(x)}{h} = \lim_{h \to 0^+} \frac{f^{(i)}(x) - f^{(i)}(x-h)}{h},$$

for all i = 0, 1, ..., n - 1.) Also we assume that $f^{(n)}$, is fuzzy continuous on T. Then for $s \ge a$; $s, a \in T$ we obtain

$$f(s) = f(a) \oplus f'(a) \odot (s-a) \oplus f''(a) \odot \frac{(s-a)^2}{2!}$$
$$\oplus \cdots \oplus f^{(n-1)}(a) \odot \frac{(s-a)^{n-1}}{(n-1)!} \oplus R_n(a,s),$$

where

$$R_n(a,s) := (FR) \int_a^s \left(\int_a^{s_1} \cdots \left(\int_a^{s_{n-1}} f^{(n)}(s_n) ds_n \right) ds_{n-1} \right) \cdots ds_1.$$

Here $R_n(a, s)$ is fuzzy continuous on T as a function of s.

Note. This formula is invalid when s < a, as it is totally based on Corollary A.

For the interest of the reader we given the following

Theorem 5.2 ([6]). Let $f:[a,b] \subseteq \mathbb{R} \to \mathbb{R}_{\mathcal{F}}$ be H-fuzzy differentiable. Let $t \in [a,b], 0 \leq r \leq 1$. (Clearly

$$[f(t)]^r = [(f(t))_-^{(r)}, (f(t))_+^{(r)}] \subseteq \mathbb{R}.)$$

Then $(f(t))_{\pm}^{(r)}$ are differentiable and

$$[f'(t)]^r = [((f(t))_-^{(r)})', ((f(t))_+^{(r)})'].$$

The last can be used to find f'.

Next $\overline{C}[0,1]$ stands for the class of all real-valued bounded functions f on [0,1] such that f is left continuous for any $x \in (0,1]$ and f has a right limit for any $x \in [0,1)$, especially f is right continuous at 0. With the norm $||f|| = \sup_{x \in [0,1]} |f(x)|$, $\overline{C}[0,1]$ is a Banach space [10].

We mention

Theorem (*) (Wu and Ma [10]). For $u \in \mathbb{R}_{\mathcal{F}}$, denote $j: j(u) := (u_-, u_+)$, where $u_{\pm} = u_{\pm}(r) := u_{\pm}^{(r)}$, $0 \le r \le 1$. Then $j(\mathbb{R}_{\mathcal{F}})$ is a closed convex cone with vertex 0 in $\overline{C}[0, 1] \times \overline{C}[0, 1]$ (here $\overline{C}[0, 1] \times \overline{C}[0, 1]$ is a Banach space with the norm defined by $\|(f, g)\| := \max(\|f\|, \|g\|)$), and $j: \mathbb{R}_{\mathcal{F}} \to \overline{C}[0, 1] \times \overline{C}[0, 1]$ satisfies

- (1) for all $u, v \in \mathbb{R}_{\mathcal{F}}$, $s \ge 0$, $t \ge 0$, j(su + tv) = sj(u) + tj(v),
- (2) D(u,v) = ||j(u) j(v)||, i.e., j embeds $\mathbb{R}_{\mathcal{F}}$ into $\overline{C}[0,1] \times \overline{C}[0,1]$ isometrically and isomorphically.

We finally mention the important connections of the H-fuzzy derivative to the Fréchet derivative.

Lemma (*) (Wu and Ma [11]). If $f:[a,b] \subseteq \mathbb{R} \to \mathbb{R}_{\mathcal{F}}$ satisfies the condition H: for any $x \in [a,b]$, there exists $\beta > 0$ such that the H-differences of f(x+h)-f(x), f(x)-f(x-h) exist for all $0 < h < \beta$, then the H-differentiability of f(x) implies the differentiability of f(x) and f(x) and f(x) where the differentiability of f(x) on f(x) is in the Fréchet's sense.

Lemma ()** (Wu and Ma [11]). If $(j \circ f)(x)$ is Fréchet differentiable and $(j \circ f)'(x) \in j(\mathbb{R}_{\mathcal{F}})$, then f(x) is H-differentiable, and $f'(x) = j^{-1}((j \circ f)'(x))$. Here $f: [a, b] \to \mathbb{R}_{\mathcal{F}}$, $j: \mathbb{R}_{\mathcal{F}} \to (\overline{C}[0, 1])^2$, and $(j \circ f): [a, b] \to (\overline{C}[0, 1])^2$.

2. Results

We present

Proposition 1. Let $F(t) := t^n \odot u$, $t \ge 0$, $n \in \mathbb{N}$, and $u \in \mathbb{R}_{\mathcal{F}}$ be fixed. Then (the H-derivative)

$$(1) F'(t) = nt^{n-1} \odot u.$$

In particular when n = 1 then F'(t) = u.

Proof. We need to establish that

$$F'(t) = F'_{+}(t) = F'_{-}(t),$$

where

$$F'_{+}(t) := \lim_{h \to 0^{+}} \frac{(t+h)^{n} \odot u - t^{n} \odot u}{h},$$

and

$$F'_{-}(t) := \lim_{h \to 0^{+}} \frac{t^{n} \odot u - (t-h)^{n} \odot u}{h},$$

the limits are taken with respect to the *D*-metric.

First we take care of the case t > 0, $n \ge 2$. Here h is a small positive quantity approaching zero. By Lemma 4.1 (iii) of [3] we notice that

$$(t+h)^n \odot u = t^n \odot u \oplus \left(\sum_{k=1}^n \binom{n}{k} t^{n-k} h^k\right) \odot u,$$

where

$$t^n, \sum_{k=1}^n \binom{n}{k} t^{n-k} h^k > 0.$$

That is the H-difference

$$(t+h)^n \odot u - t^n \odot u = \left(\sum_{k=1}^n \binom{n}{k} t^{n-k} h^k\right) \odot u$$

exists, and

$$\frac{(t+h)^n \odot u - t^n \odot u}{h} = \left(\sum_{k=1}^n \binom{n}{k} t^{n-k} h^{k-1}\right) \odot u.$$

Then we observe that

$$\lim_{h \to 0^{+}} D\left(\frac{(t+h)^{n} \odot u - t^{n} \odot u}{h}, nt^{n-1} \odot u\right)$$

$$= \lim_{h \to 0^{+}} D\left(\left(\sum_{k=1}^{n} \binom{n}{k} t^{n-k} h^{k-1}\right) \odot u, nt^{n-1} \odot u\right)$$

$$\leq \text{(by Lemma 2.2 of [3])}$$

$$\lim_{h \to 0^{+}} \left|\left(\sum_{k=1}^{n} \binom{n}{k} t^{n-k} h^{k-1}\right) - nt^{n-1}\right| D(u, \tilde{o})$$

$$= \lim_{h \to 0^{+}} \left(\sum_{k=2}^{n} \binom{n}{k} t^{n-k} h^{k-1}\right) D(u, \tilde{o}) = 0D(u, \tilde{o}) = 0.$$

That is

$$F'_{+}(t) = nt^{n-1} \odot u, \quad t > 0, \quad n \ge 2.$$

Furthermore we notice that

$$F'_{-}(t) = \lim_{h \to 0^{+}} \frac{((t-h)+h)^{n} \odot u - (t-h)^{n} \odot u}{h}.$$

We set $\beta := t - h$, which for sufficiently small h > 0 is positive, i.e., $\beta > 0$. Thus

$$F'_{-}(t) = \lim_{h \to 0^{+}} \frac{(\beta + h)^{n} \odot u - \beta^{n} \odot u}{h}.$$

Again we have

$$(\beta+h)^n \odot u = \beta^n \odot u \oplus \left(\sum_{k=1}^n \binom{n}{k} \beta^{n-k} h^k\right) \odot u,$$

where

$$\beta^n, \sum_{k=1}^n \binom{n}{k} \beta^{n-k} h^k > 0.$$

That is the H-difference

$$(\beta + h)^n \odot u - \beta^n \odot u = \left(\sum_{k=1}^n \binom{n}{k} \beta^{n-k} h^k\right) \odot u$$

exists, and

$$\frac{(\beta+h)^n \odot u - \beta^n \odot u}{h} = \left(\sum_{k=1}^n \binom{n}{k} \beta^{n-k} h^{k-1}\right) \odot u.$$

Then we observe that

$$\lim_{h \to 0^{+}} D\left(\frac{t^{n} \odot u - (t - h)^{n} \odot u}{h}, nt^{n-1} \odot u\right)$$

$$= \lim_{h \to 0^{+}} D\left(\left(\sum_{k=1}^{n} \binom{n}{k} \beta^{n-k} h^{k-1}\right) \odot u, nt^{n-1} \odot u\right)$$

$$\leq \lim_{h \to 0^{+}} \left|\sum_{k=1}^{n} \binom{n}{k} \beta^{n-k} h^{k-1} - nt^{n-1}\right| D(u, \tilde{o})$$

$$= \lim_{h \to 0^{+}} \left|n(t - h)^{n-1} + \sum_{k=2}^{n} \binom{n}{k} (t - h)^{n-k} h^{k-1} - nt^{n-1}\right| D(u, \tilde{o})$$

$$= 0D(u, \tilde{o}) = 0.$$

Hence $F'_{-}(t) = nt^{n-1} \odot u$, t > 0, $n \ge 2$. That is,

$$F'(t) = nt^{n-1} \odot u, \quad t > 0, \quad n \ge 2.$$

Next we treat separately the case of $n=1,\,t>0$ for the sake of clarity. Here

$$\lim_{h \to 0^+} D\left(\frac{(t+h) \odot u - t \odot u}{h}, u\right) = \lim_{h \to 0^+} D\left(\frac{h \odot u}{h}, u\right)$$
$$= \lim_{h \to 0^+} D(u, u) = 0.$$

I.e., $F'_{+}(t) = u$, t > 0, n = 1. And we see that

$$\begin{split} &\lim_{h \to 0^+} D\left(\frac{t \odot u - (t-h) \odot u}{h}, u\right) \\ &= \lim_{h \to 0^+} D\left(\frac{((t-h)+h) \odot u - (t-h) \odot u}{h}, u\right) \\ &= \lim_{h \to 0^+} D\left(\frac{(\beta+h) \odot u - \beta \odot u}{h}, u\right) \\ &= \lim_{h \to 0^+} D\left(\frac{h \odot u}{h}, u\right) = \lim_{h \to 0^+} D(u, u) = 0, \end{split}$$

where $\beta := t - h > 0$, for sufficiently small h > 0. I.e., $F'_{-}(t) = u$, t > 0, n = 1. That is

$$F'(t) = u, \quad t > 0, \quad n = 1.$$

At last we do the case of t = 0. Here we need to find

$$F'_{+}(0) = \lim_{h \to 0^{+}} \frac{h^{n} \odot u}{h} = \lim_{h \to 0^{+}} h^{n-1} \odot u.$$

For n = 1, we see that

$$\lim_{h \to 0^+} D(h^{n-1} \odot u, u) = \lim_{h \to 0^+} D(u, u) = 0.$$

Thus

$$F'(0) = F'_{+}(0) = u$$
, for $n = 1$.

For $n \geq 2$ we see that

$$\lim_{h \to 0^+} D(h^{n-1} \odot u, \tilde{o}) = D(\tilde{o}, \tilde{o}) = 0.$$

Therefore

$$F'(0) = F'_{+}(0) = \tilde{o}, \text{ for } n \ge 2.$$

That is

$$F'(t) = nt^{n-1} \odot u$$
 is true for $t = 0$.

Remark 1. Let a_i , $i=1,\ldots$, be a sequence of real numbers all of the same sign such that $|\sum_{i=1}^{\infty} a_i| < +\infty$. Then

$$\left(\sum_{i=1}^{n} \alpha_i\right) \odot u = \sum_{i=1}^{n} (a_i \odot u), \quad u \in \mathbb{R}_{\mathcal{F}}, \quad \forall n \in \mathbb{N},$$

by Lemma 4.1 (iii) of [3]. Since

$$D\left(\left(\sum_{i=1}^{n} a_i\right) \odot u, \sum_{i=1}^{n} (\alpha_i \odot u)\right) = 0,$$

one obtains

$$\lim_{n \to +\infty} D\left(\left(\sum_{i=1}^n a_i\right) \odot u, \sum_{i=1}^n (a_i \odot u)\right) = 0.$$

That is

$$\left(\sum_{i=1}^{\infty} a_i\right) \odot u = \sum_{i=1}^{\infty} (a_i \odot u) \in \mathbb{R}_{\mathcal{F}}.$$

Next we give

Proposition 2. Let $F(x) = x^p \odot u$, $x \ge 0$, $u \in \mathbb{R}_{\mathcal{F}}$, and p > 0 not an integer. Then

(2)
$$F'(x) = px^{p-1} \odot u, \quad p > 0, \quad x > 0,$$

and

(3)
$$F'(o) = \tilde{o}, \quad \text{for } p > 1.$$

Proof. When p > 0 and $-1 \le x \le 1$ from [8], p. 232 we obtain the Binomial series, which converges absolutely

$$(1+x)^p = 1 + px + \frac{p(p-1)}{2!}x^2 + \dots + \frac{p(p-1)\cdots(p-n+1)}{n!}x^n + \dots$$

In the last we plug in instead of x, $\frac{h}{x}$ for h, x > 0 and $h \le x$. Clearly $-1 \le \frac{h}{x} \le 1$ is automatically fulfilled and x + h > 0. That is

$$\left(1 + \frac{h}{x}\right)^p = 1 + p\frac{h}{x} + \frac{p(p-1)}{2!} \frac{h^2}{x^2} + \dots + \frac{p(p-1)\cdots(p-n+1)}{n!} \frac{h^n}{x^n} + \dots$$

And

$$(x+h)^{p} = x^{p} + phx^{p-1} + \frac{p(p-1)}{2!}h^{2}x^{p-2} + \cdots + \frac{p(p-1)\cdots(p-n+1)}{n!}h^{n}x^{p-n} + \cdots$$

By x + h > x we have $(x + h)^p > x^p > 0$ and $(x + h)^p - x^p > 0$. Consequently it holds

$$\Delta := phx^{p-1} + \frac{p(p-1)}{2!}h^2x^{p-2} + \cdots + \frac{p(p-1)\cdots(p-n+1)}{n!}h^nx^{p-n} + \cdots > 0.$$

Therefore

$$(x+h)^p \odot u - x^p \odot u = \Delta \odot u$$
 exists in $\mathbb{R}_{\mathcal{F}}$.

Hence

$$\lim_{h \to 0^{+}} D\left(\frac{(x+h)^{p} \odot u - x^{p} \odot u}{h}, px^{p-1} \odot u\right)
= \lim_{h \to 0^{+}} D\left(\frac{\Delta}{h} \odot u, px^{p-1} \odot u\right) \le \lim_{h \to 0^{+}} \left|\frac{\Delta}{h} - px^{p-1}\right| D(u, \tilde{o})
= \lim_{h \to 0^{+}} \left|px^{p-1} + \frac{p(p-1)}{2!} hx^{p-2} + \cdots + \frac{p(p-1) \cdots (p-n+1)}{n!} h^{n-1} x^{p-n} + \cdots - px^{p-1}\right| D(u, \tilde{o})
= 0D(u, \tilde{o}) = 0.$$

I.e.,

$$F'_{+}(x) = (x^{p} \odot u)'_{+} = px^{p-1} \odot u, \quad p > 0, \quad x > 0.$$

Next we evaluate in D-metric

$$F'_{-}(t) = \lim_{h \to 0^{+}} \frac{x^{p} \odot u - (x - h)^{p} \odot u}{h}$$

$$= \lim_{h \to 0^{+}} \frac{((x - h) + h)^{p} \odot u - (x - h)^{p} \odot u}{h}$$

$$= \lim_{h \to 0^{+}} \frac{(\beta + h)^{p} \odot u - \beta^{p} \odot u}{h},$$

where $\beta := x - h > 0$, for h > 0 small enough. In fact we choose h such that 2h < x, that is, $h < x - h = \beta$. I.e., $0 < h < \beta$. Next we apply the Binomial

series for $\frac{h}{\beta}$. Thus

$$(\beta + h)^{p} = \beta^{p} + ph\beta^{p-1} + \frac{p(p-1)}{2!}h^{2}\beta^{p-2} + \cdots + \frac{p(p-1)\cdots(p-n+1)}{n!}h^{n}\beta^{p-n} + \cdots$$

Clearly $\beta + h > \beta$ and $(\beta + h)^p > \beta^p > 0$, by p > 0. And $(\beta + h)^p - \beta^p > 0$. Hence

$$\Delta^* := ph\beta^{p-1} + \frac{p(p-1)}{2!}h^2\beta^{p-2} + \cdots + \frac{p(p-1)\cdots(p-n+1)}{n!}h^n\beta^{p-n} + \cdots > 0.$$

Therefore

$$(\beta + h)^p \odot u - \beta^p \odot u = \Delta^* \odot u$$
 exists in $\mathbb{R}_{\mathcal{F}}$.

Furthermore we have

$$\lim_{h \to 0^+} D\left(\frac{(\beta+h)^p \odot u - \beta^p \odot u}{h}, px^{p-1} \odot u\right)$$

$$= \lim_{h \to 0^+} D\left(\frac{\Delta^*}{h} \odot u, px^{p-1} \odot u\right)$$

$$= \lim_{h \to 0^+} D\left(\left(p\beta^{p-1} + \frac{p(p-1)}{2!}h\beta^{p-2} + \cdots + \frac{p(p-1)\cdots(p-n+1)}{n!}h^{n-1}\beta^{p-n}\right) \odot u, px^{p-1} \odot u\right)$$

$$= D(px^{p-1} \odot u, px^{p-1} \odot u) = 0.$$

I.e.,
$$F'_{-}(x) = (x^p \odot u)'_{-} = px^{p-1} \odot u, p > 0, x > 0$$
. That is
$$F'(x) = (x^p \odot u)' = px^{p-1} \odot u, \quad p > 0, \quad x > 0.$$

Finally at x = 0 we get

$$F'(0) = F'_{+}(0) = \lim_{h \to 0^{+}} \frac{(o+h)^{p} \odot u}{h} = \lim_{h \to 0^{+}} h^{p-1} \odot u.$$

Hence

$$\lim_{h \to 0^+} D(h^{p-1} \odot u, \tilde{o}) = D(\tilde{o}, \tilde{o}) = 0, \quad p > 1.$$

I.e.,
$$F'(0) = (x^p \odot u)'|_{x=0} = \tilde{o}, p > 1.$$

It follows

Proposition 3. Let $u \in \mathbb{R}_{\mathcal{F}}$ be fixed. Then

$$(4) (e^x \odot u)' = e^x \odot u, any x \in \mathbb{R}.$$

Proof. We have

$$e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots + \frac{x^n}{n!} + \dots, \quad -\infty < x < +\infty.$$

Then

$$e^{x+h} = 1 + (x+h) + \frac{(x+h)^2}{2!} + \frac{(x+h)^3}{3!} + \dots + \frac{(x+h)^n}{n!} + \dots, \quad h > 0.$$

Consequently we get

$$e^{x+h} - e^x = h + \left(\frac{2xh + h^2}{2!}\right) + \left(\frac{3x^2h + 3xh^2 + h^3}{3!}\right) + \dots + \left(\frac{\sum_{k=1}^{n} \binom{n}{k} x^{n-k} h^k}{n!}\right) + \dots =: \Delta.$$

Here $x \in \mathbb{R}$ and x + h > x. Since e^x is increasing then $e^{x+h} > e^x > 0$ and $e^{x+h} - e^x > 0$. I.e., $\Delta > 0$.

Therefore the next H-difference and quotient makes sense in $\mathbb{R}_{\mathcal{F}}$,

$$\frac{e^{x+h} \odot u - e^x \odot u}{h} = \frac{\Delta}{h} \odot u$$

$$= \left\{ 1 + \left(\frac{2x+h}{2!} \right) + \left(\frac{3x^2 + 3xh + h^2}{3!} \right) + \cdots \right\}$$

$$+ \left(\frac{\sum_{k=1}^n \binom{n}{k} x^{n-k} h^{k-1}}{n!} \right) + \cdots \right\} \odot u =: K \odot u, \quad K > 0.$$

Thus

$$\lim_{h \to 0^{+}} D(K \odot u, e^{x} \odot u) \leq \lim_{h \to 0^{+}} |K - e^{x}| D(u, \tilde{o})$$

$$= \left| 1 + x + \frac{x^{2}}{2!} + \dots + \frac{x^{n}}{n!} + \dots - e^{x} \right|.$$

$$D(u, \tilde{o}) = |e^x - e^x| D(u, \tilde{o}) = 0.$$

We prove that $(e^x \odot u)'_+ = e^x \odot u$.

Next we evaluate

$$(e^x \odot u)'_- = \lim_{h \to 0^+} \frac{e^x \odot u - e^{x-h} \odot u}{h}, \quad x \in \mathbb{R}, \ u \in \mathbb{R}_{\mathcal{F}}.$$

By setting $\beta := x - h$ we get

$$(e^x \odot u)'_- = \lim_{h \to 0^+} \frac{e^{\beta + h} \odot u - e^{\beta} \odot u}{h}.$$

Again we have $\beta + h > \beta$ and $e^{\beta + h} > e^{\beta} > 0$, and $e^{\beta + h} - e^{\beta} > 0$. Furthermore it holds

$$e^{\beta+h} - e^{\beta} = h + \left(\frac{2\beta h + h^2}{2!}\right) + \left(\frac{3\beta^2 h + 3\beta h^2 + h^3}{3!}\right) + \dots + \left(\frac{\sum_{k=1}^{n} \binom{n}{k} \beta^{n-k} h^k}{n!}\right) + \dots =: \Delta^*.$$

Clearly $0 < \Delta^* < +\infty$.

The next make sense in $\mathbb{R}_{\mathcal{F}}$

$$\frac{e^{\beta+h} \odot u - e^{\beta} \odot u}{h} = \frac{\Delta^*}{h} \odot u$$

$$= \left\{ 1 + \left(\frac{2\beta+h}{2!} \right) + \left(\frac{3\beta^2 + 3\beta h + h^2}{3!} \right) + \cdots \right\}$$

$$+ \left(\frac{\sum_{k=1}^{n} \binom{n}{k} \beta^{n-k} h^{k-1}}{n!} \right) + \cdots \right\} \odot u$$

$$=: K^* \odot u, \quad K^* > 0.$$

Thus

$$\lim_{h \to 0^+} D(K^* \odot u, e^x \odot u) \le \lim_{h \to 0^+} |K^* - e^x| D(u, \tilde{o})$$

$$= \left| 1 + x + \frac{x^2}{2} + \dots + \frac{x^n}{n!} + \dots - e^x \right| D(u, \tilde{o}) = 0.$$

We have established

$$(e^x \odot u)'_- = e^x \odot u,$$

and finally proved (4).

Note. Clearly $(e^x \odot u)^{(\ell)} = e^x \odot u$, $\ell \in \mathbb{N}$, $u \in \mathbb{R}_{\mathcal{F}}$ is fixed, $x \in \mathbb{R}$.

Next we need

Bernstein's Theorem 13-31 (see [4], p. 418). Assume that $f \in C^{\infty}$ on an open interval of the form $(a - \delta, b)$, where $\delta > 0$, and suppose that f and all its derivatives are non-negative in the half-open interval [a, b). Then, for every x_0 in [a, b), we have

$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(x_0)}{n!} (x - x_0)^n, \quad \text{if } x_0 \le x < b.$$

We present

Proposition 4. Let $u \in \mathbb{R}_{\mathcal{F}}$ be fixed, and $f \in C^{\infty}(-\varepsilon, r)$, $\varepsilon > 0$, r > 0 and assume that $f, f', f'', \ldots \geq 0$ on [0, r), with f(0) = 0. Then

(5)
$$(f(x) \odot u)' = f'(x) \odot u, \quad \text{for } 0 \le x < r.$$

Clearly

(6)
$$(f(x) \odot u)^{(\ell)} = f^{(\ell)}(x) \odot u, \quad \text{for } 0 \le x < r, \quad \ell \in \mathbb{N}.$$

E.g., $f(x) = \sin hx$.

Proof. By Bernstein's Theorem we have

$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^n,$$

and

$$f(x+h) = \sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} (x+h)^n, \quad x \in [0,r)$$

and h > 0 such that $x + h \in [0, r)$. Since f is non-decreasing we have $f(x + h) \ge f(x) \ge 0$, and $f(x + h) - f(x) \ge 0$. Consequently we see that

$$f(x+h) - f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} ((x+h)^n - x^n)$$
$$= \sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} \left(\sum_{k=1}^n \binom{n}{k} x^{n-k} h^k \right) \ge 0.$$

Thus

$$\frac{f(x+h) - f(x)}{h} = \sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} \left(\sum_{k=1}^{n} \binom{n}{k} x^{n-k} h^{k-1} \right) \ge 0.$$

Therefore the next makes sense in $\mathbb{R}_{\mathcal{F}}$

$$\frac{f(x+h)\odot u - f(x)\odot u}{h} = \sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} \left(\sum_{k=1}^{n} \binom{n}{k} x^{n-k} h^{k-1}\right) \odot u.$$

Then

$$\lim_{h \to 0^{+}} D\left(\left(\sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} \left(\sum_{k=1}^{n} \binom{n}{k} x^{n-k} h^{k-1}\right)\right) \odot u, f'(x) \odot u\right)$$

$$\leq \lim_{h \to 0^{+}} \left|\sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} \left(\sum_{k=1}^{n} \binom{n}{k} x^{n-k} h^{k-1}\right)\right) - f'(x)\right| D(u, \tilde{o})$$

$$= \left|\sum_{n=1}^{\infty} \frac{f^{(n)}(0)}{n!} (nx^{n-1}) - f'(x)\right| D(u, \tilde{o})$$

$$= |f'(x) - f'(x)| D(u, \tilde{o}) = 0.$$

I.e.,

$$(f(x) \odot u)'_{+} = f'(x) \odot u, \quad 0 \le x < r.$$

Call $\beta := x - h$, x > 0, x > h as $h \to 0^+$. Clearly $\beta > 0$. Here

$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} (\beta + h)^n,$$

and

$$f(x-h) = f(\beta) = \sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} \beta^n.$$

Also f(x), $f(x-h) \ge 0$ and $f(x) \ge f(x-h)$. Thus

$$f(x) - f(x - h) = \sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} ((\beta + h)^n - \beta^n)$$
$$= \sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} \left(\sum_{k=1}^{n} \binom{n}{k} \beta^{n-k} h^k \right) \ge 0.$$

Furthermore

$$\frac{f(x) - f(x - h)}{h} = \sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} \left(\sum_{k=1}^{n} \binom{n}{k} \beta^{n-k} h^{k-1} \right) \ge 0.$$

Consequently

$$\lim_{h \to 0^{+}} D\left(\frac{f(x) \odot u - f(x-h) \odot u}{h}, f'(x) \odot u\right)$$

$$= \lim_{h \to 0^{+}} D\left(\left(\sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} \left(\sum_{k=1}^{n} \binom{n}{k} \beta^{n-k} h^{k-1}\right) \odot u, f'(x) \odot u\right)\right)$$

$$\leq \lim_{h \to 0^{+}} \left|\sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} \left(\sum_{k=1}^{n} \binom{n}{k} \beta^{n-k} h^{k-1}\right) - f'(x)\right|.$$

$$D(u, \tilde{o}) = \left| \sum_{n=1}^{\infty} \frac{f^{(n)}(0)}{n!} (nx^{n-1}) - f'(x) \right| D(u, \tilde{o})$$
$$= |f'(x) - f'(x)| D(u, \tilde{o}) = 0.$$

I.e.,

$$(f(x) \odot u)'_{-} = f'(x) \odot u, \quad 0 < x < r.$$

We have established (5).

Note. One can do other examples of calculation of H-derivatives of basic fuzzy functions, working as above with power series over appropriate intervals.

We mention

Lemma 1. Let $f, g: (a,b) \subseteq \mathbb{R} \to \mathbb{R}_{\mathcal{F}}$ be fuzzy continuous functions. Assume that the H-difference function f-g exists on (a,b). Then f-g is a fuzzy continuous function on (a,b).

Proof. Let $x_n, x \in (a, b)$ such that $x_n \to x$, as $n \to +\infty$. We observe that

$$D(f(x_n) - g(x_n), f(x) - g(x))$$

$$= D(f(x_n) - g(x_n) \oplus g(x_n), g(x_n) \oplus f(x) - g(x))$$

$$= D(f(x_n), g(x_n) \oplus f(x) - g(x))$$

$$= D(f(x_n) \oplus g(x), g(x_n) \oplus f(x) - g(x) \oplus g(x))$$

$$= D(f(x_n) \oplus g(x), g(x_n) \oplus f(x))$$

$$\leq D(f(x_n), f(x)) + D(g(x_n), g(x)) \to 0.$$

Lemma 2. Let U be an open subset of \mathbb{R}^2 and let $f,g:U\to\mathbb{R}_{\mathcal{F}}$ be fuzzy continuous (jointly) in $(x,y)\in U$. Then D(f(x,y),g(x,y)) is continuous (jointly) in (x,y).

Proof. It is similar to [5], p. 644, Lemma 13.2 (ii). It goes as follows: Let $U \ni z_n := (x_n, y_n) \to z := (x, y)$, as $n \to +\infty$. We have

$$D(f(z_n), g(z_n)) \le D(f(z_n), f(z)) + D(f(z), g(z)) + D(g(z), g(z_n)),$$

and

$$D(f(z), g(z)) \le D(f(z), f(z_n)) + D(f(z_n), g(z_n)) + D(g(z_n), g(z)).$$

Passing to the limit as $n \to +\infty$, from the continuity of f and g we obtain

$$\lim_{n \to +\infty} D(f(z_n), g(z_n)) = D(f(z), g(z)).$$

We give

Proposition 5. Let I be an open interval of \mathbb{R} and let $f, g: I \to \mathbb{R}_{\mathcal{F}}$ be fuzzy differentiable functions with H-derivatives f', g'. Then $(f \oplus g)'$ exists and

$$(7) (f \oplus g)' = f' \oplus g'.$$

Proof. Let $h \to 0^+$, then by assumption

$$\alpha := f(x+h) - f(x), \quad \beta := g(x+h) - g(x) \in \mathbb{R}_{\mathcal{F}}.$$

Hence $f(x+h) = \alpha \oplus f(x), g(x+h) = \beta \oplus g(x)$. Thus

$$(f \oplus g)(x+h) = \alpha \oplus \beta \oplus (f \oplus g)(x),$$

i.e.,

$$(f \oplus g)(x+h) - (f \oplus g)(x) = \alpha \oplus \beta.$$

Therefore

$$D\left(\frac{(f \oplus g)(x+h) - (f \oplus g)(x)}{h}, f'(x) \oplus g'(x)\right)$$

$$= D\left(\frac{\alpha}{h} \oplus \frac{\beta}{h}, f'(x) \oplus g'(x)\right)$$

$$\leq D\left(\frac{\alpha}{h}, f'(x)\right) + D\left(\frac{\beta}{h}, g'(x)\right) \to 0, \text{ as } h \to 0^+.$$

Next we set

$$\gamma := f(x) - f(x - h), \quad \delta := g(x) - g(x - h).$$

Clearly $\gamma, \delta \in \mathbb{R}_{\mathcal{F}}$. Then $f(x) = \gamma \oplus f(x-h), g(x) = \delta \oplus g(x-h)$. Hence

$$(f \oplus g)(x) = (\gamma \oplus \delta) \oplus (f \oplus g)(x - h),$$

i.e.,

$$(f \oplus g)(x) - (f \oplus g)(x - h) = \gamma \oplus \delta.$$

Therefore

$$D\left(\frac{(f \oplus g)(x) - (f \oplus g)(x - h)}{h}, f'(x) \oplus g'(x)\right)$$

$$= D\left(\frac{\gamma \oplus \delta}{h}, f'(x) \oplus g'(x)\right)$$

$$\leq D\left(\frac{\gamma}{h}, f'(x)\right) + D\left(\frac{\delta}{h}, g'(x)\right) \to 0, \text{ as } h \to 0^+.$$

That is, proving the claim.

The counterpart of the above follows.

Proposition 6. Let I be an open interval of \mathbb{R} and let $f: \to \mathbb{R}_{\mathcal{F}}$ be H-fuzzy differentiable, $c \in \mathbb{R}$. Then

(8)
$$(c \odot f)'$$
 exists and $(c \odot f)' = c \odot f'(x)$.

Proof. We see

$$D\left(\frac{(c\odot f)(x+h)-(c\odot f)(x)}{h},c\odot f'(x)\right)$$
$$=D\left(\frac{c\odot f(x+h)-c\odot f(x)}{h},c\odot f'(x)\right)=:(*).$$

Here $\alpha := f(x+h) - f(x) \in \mathbb{R}_{\mathcal{F}}$, so that $f(x+h) = \alpha \oplus f(x)$. Then

$$c \odot f(x+h) = c \odot \alpha \oplus c \odot f(x).$$

I.e., $c \odot f(x+h) - c \odot f(x) = c \odot a$. Therefore

$$(*) = D\left(\frac{c \odot a}{h}, c \odot f'(x)\right)$$
$$= |c|D\left(\frac{a}{h}, f'(x)\right) \to 0, \text{ as } h \to 0^+.$$

Next let $\beta := f(x) - f(x - h) \in \mathbb{R}_{\mathcal{F}}$, so that $f(x) = \beta \oplus f(x - h)$. Hence

$$c \odot f(x) = c \odot \beta \oplus c \odot f(x - h),$$

i.e.,

$$c \odot f(x) - c \odot f(x - h) = c \odot \beta$$
.

Therefore

$$D\left(\frac{(c\odot f)(x) - (c\odot f)(x-h)}{h}, c\odot f'(x)\right)$$

$$= D\left(\frac{c\odot f(x) - c\odot f(x-h)}{h}, c\odot f'(x)\right)$$

$$= D\left(\frac{c\odot \beta}{h}, c\odot f'(x)\right) = |c|D\left(\frac{\beta}{h}, f'(x)\right) \to 0, \text{ as } h \to 0^+.$$

That is establishing the claim.

Note. Linearity is true in H-fuzzy differentiation, that is

$$(\lambda \odot f \oplus \mu \odot g)' = \lambda \odot f' \oplus \mu \odot g',$$

when $\lambda, \mu \in \mathbb{R}$ and f, g are H-fuzzy differentiable.

3. Main Results

We present the "Fuzzy Mean Value Theorem".

Theorem 1. Let $f:[a,b] \to \mathbb{R}_{\mathcal{F}}$ be a fuzzy differentiable function on [a,b] with H-fuzzy derivative f' which is assumed to be fuzzy continuous. Then

(9)
$$D(f(d), f(c)) \le (d - c) \sup_{t \in [c, d]} D(f'(t), \tilde{o}),$$

for any $c, d \in [a, b]$ with $d \ge c$.

Proof. By Corollary A of [1] it holds that

$$f(c) = f(a) \oplus (FR) \int_a^c f'(t)dt,$$

and

$$f(d) = f(a) \oplus (FR) \int_{a}^{d} f'(t)dt.$$

Then

$$D(f(d), f(c)) = D\left(f(a) \oplus (FR) \int_{a}^{d} f'(t)dt, f(a) \oplus (FR) \int_{a}^{c} f'(t)dt\right)$$

$$= D\left((FR) \int_{a}^{d} f'(t)dt, (FR) \int_{a}^{c} f'(t)dt\right)$$

$$= D\left((FR) \int_{a}^{c} f'(t)dt \oplus (FR) \int_{c}^{d} f'(t)dt, (FR) \int_{a}^{c} f'(t)dt\right)$$

$$= D\left((FR) \int_{c}^{d} f'(t)dt, \tilde{o}\right) =: (*).$$

Clearly $k \odot \tilde{o} = \tilde{o}$ for $k \in \mathbb{R}$. And

$$\tilde{o} = \tilde{o} \odot (d - c) = \tilde{o} \odot \int_{c}^{d} 1 \, dt = (FR) \int_{c}^{d} (\tilde{o} \odot 1) dt = (FR) \int_{c}^{d} \tilde{o} \, dt.$$

Hence

$$(*) = D\left((FR) \int_{c}^{d} f'(t)dt, (FR) \int_{c}^{d} \tilde{o} dt\right)$$

$$(\text{by Lemma 1, [1]}) \int_{c}^{d} D(f'(t), \tilde{o})dt \leq (d-c) \sup_{t \in [c,d]} D(f'(t), \tilde{o}) < +\infty,$$

by Lemma 2 of [1].

We need

Lemma 3. Let $u_n, v_n, u, v \in \mathbb{R}_{\mathcal{F}}$, $n \in \mathbb{N}$. Let $u_n \to u$, $v_n \to v$, as $n \to +\infty$. Then $D(u_n, v_n) \to D(u, v)$, as $n \to +\infty$ (i.e., D(u, v) is continuous in (u, v)). In particular $D(u_n, v) \to D(u, v)$, as $n \to +\infty$. We write

$$\lim_{n \to +\infty} D(u_n, v_n) = D\left(\lim_{n \to +\infty} u_n, \lim_{n \to +\infty} v_n\right) = D(u, v).$$

Lemma 4. Let $u_n, u \in \mathbb{R}_{\mathcal{F}}$; $c_n, c \in \mathbb{R}_+$, such that $u_n \to u$ and $c_n \to c$, as $n \to +\infty$. Then in D-metric

$$u_n \odot c_n \to u \odot c$$
, as $n \to +\infty$,

i.e.,

$$\lim_{n \to +\infty} (u_n \odot c_n) = \left(\lim_{n \to +\infty} u_n\right) \odot \left(\lim_{n \to +\infty} c_n\right) = u \odot c.$$

Proof. We notice that

$$D(u_n \odot c_n, u \odot c) \leq D(u_n \odot c_n, u_n \odot c) + D(u_n \odot c, u \odot c)$$
(by Lemma 2.2, [3])
$$\leq |c_n - c|D(u_n, \tilde{o}) + cD(u_n, u)$$
(by Lemma 3)
$$\to 0D(u, \tilde{o}) + c0 = 0.$$

That is

$$\lim_{n \to +\infty} D(u_n \odot c_n, u \odot c) = 0.$$

We present the "Univariate Fuzzy Chain Rule".

Theorem 2. Let I be a closed interval in \mathbb{R} . Here $g: I \to \zeta := g(I) \subseteq \mathbb{R}$ is differentiable, and $f: \zeta \to \mathbb{R}_{\mathcal{F}}$ is H-fuzzy differentiable. Assume that g is strictly increasing. Then $(f \circ g)'(x)$ exists and

$$(10) (f \circ g)'(x) = f'(g(x)) \odot g'(x), \quad \forall x \in I.$$

Proof. Call u := g(x). Let $\Delta x > 0$, such that $\Delta x \to 0^+$.

i) Let $\Delta u := g(x + \Delta x) - g(x)$. Then $\Delta u > 0$, and as $\Delta x \to 0^+$ we get $\Delta u \to 0^+$ by continuity of g. See that $g(x + \Delta x) = u + \Delta u$. We observe that

$$\lim_{\Delta x \to 0^{+}} D\left(\frac{f(g(x + \Delta x)) - f(g(x))}{\Delta x}, f'(g(x)) \odot g'(x)\right)$$

$$= \lim_{\Delta x \to 0^{+}} D\left(\left(\frac{f(g(x + \Delta x)) - f(g(x))}{g(x + \Delta x) - g(x)}\right)\right)$$

$$\odot \left(\frac{g(x + \Delta x) - g(x)}{\Delta x}\right), f'(g(x)) \odot g'(x)\right)$$

$$= \lim_{\Delta x \to 0^{+}} D\left(\left(\frac{f(u + \Delta u) - f(u)}{\Delta u}\right)\right)$$

$$\odot \left(\frac{g(x + \Delta x) - g(x)}{\Delta x}\right), f'(g(x)) \odot g'(x)$$

$$= D(f'(u) \odot g'(x), f'(g(x)) \odot g'(x)) = 0,$$

by Lemmas 3 and 4. I.e.,

$$(f \odot g)'_{+} = f'(g(x)) \odot g'(x).$$

ii) Let $\Delta u := g(x) - g(x - \Delta x)$. Then $\Delta u > 0$, and as $\Delta x \to 0^+$ we get $\Delta u \to 0^+$ by continuity of g. Notice that $g(x - \Delta x) = u - \Delta u$. We observe that

$$\lim_{\Delta x \to 0^{+}} D\left(\frac{f(g(x)) - f(g(x - \Delta x))}{\Delta x}, f'(g(x)) \odot g'(x)\right)$$

$$= \lim_{\Delta x \to 0^{+}} D\left(\left(\frac{f(g(x)) - f(g(x - \Delta x))}{g(x) - g(x - \Delta x)}\right)\right)$$

$$\odot \left(\frac{g(x) - g(x - \Delta x)}{\Delta x}\right), f'(g(x)) \odot g'(x)\right)$$

$$= \lim_{\Delta x \to 0^{+}} D\left(\left(\frac{f(u) - f(u - \Delta u)}{\Delta u}\right)\right)$$

$$\odot \left(\frac{g(x) - g(x - \Delta x)}{\Delta x}\right), f'(g(x)) \odot g'(x)$$

$$= D(f'(u) \odot g'(x), f'(g(x)) \odot g'(x)) = 0,$$

by Lemmas 3 and 4. I.e.,

$$(f \circ g)'_{-} = f'(g(x)) \odot g'(x).$$

At the endpoints of I we take one-sided derivatives.

Next follows the multivariate fuzzy chain rule.

Theorem 3. Let $\phi_i: [a,b] \subseteq \mathbb{R} \to \phi_i([a,b]) := I_i \subseteq \mathbb{R}$, $i=1,\ldots,n$, $n \in \mathbb{N}$, are strictly increasing and differentiable functions. Denote $x_i := x_i(t) := \phi_i(t)$, $t \in [a,b]$, $i=1,\ldots,n$. Consider U an open subset of \mathbb{R}^n such that $\times_{i=1}^n I_i \subseteq U$. Consider $f: U \to \mathbb{R}_{\mathcal{F}}$ a fuzzy continuous function. Assume that $f_{x_i}: U \to \mathbb{R}_{\mathcal{F}}$, $i=1,\ldots,n$, the H-fuzzy partial derivatives of f, exist and are fuzzy continuous. Call $z := z(t) := f(x_1,\ldots,x_n)$. Then $\frac{dz}{dt}$ exists and

(11)
$$\frac{dz}{dt} = \sum_{i=1}^{n} {}^{*} \frac{dz}{dx_{i}} \odot \frac{dx_{i}}{dt}, \quad \forall t \in [a, b]$$

where $\frac{dz}{dt}$, $\frac{dz}{dx_i}$, i = 1, ..., n are the H-fuzzy derivatives of f with respect to t, x_i , respectively.

Proof. Let first $t \in (a, b)$. Let a general $(x_1, x_2, ..., x_n) \in U$ be fixed and let $\Delta x_i > 0$, i = 1, ..., n, be small.

I) Call

$$\alpha_1 := f(x_1 + \Delta x_1, x_2 + \Delta x_2, \dots, x_n + \Delta x_n)$$
$$- f(x_1, x_2 + \Delta x_2, \dots, x_n + \Delta x_n) \in \mathbb{R}_{\mathcal{F}}.$$

That is

$$f(x_1 + \Delta x_1, x_2 + \Delta x_2, \dots, x_n + \Delta x_n) = \alpha_1 \oplus f(x_1, x_2 + \Delta x_2, \dots, x_n + \Delta x_n).$$

Call

$$\alpha_2 := f(x_1, x_2 + \Delta x_2, \dots, x_n + \Delta x_n)$$

- $f(x_1, x_2, x_3 + \Delta x_3, \dots, x_n + \Delta x_n) \in \mathbb{R}_{\mathcal{F}}.$

That is

$$f(x_1, x_2 + \Delta x_2, \dots, x_n + \Delta x_n) = \alpha_2 \oplus f(x_1, x_2, x_3 + \Delta x_3, \dots, x_n + \Delta x_n).$$

Call

$$\alpha_3 := f(x_1, x_2, x_3 + \Delta x_3, \dots, x_n + \Delta x_n)$$

- $f(x_1, x_2, x_3, x_4 + \Delta x_4, \dots, x_n + \Delta x_n) \in \mathbb{R}_{\mathcal{F}}.$

That is

$$f(x_1, x_2, x_3 + \Delta x_3, \dots, x_n + \Delta x_n) = \alpha_3 \oplus f(x_1, x_2, x_3, x_4 + \Delta x_4, \dots, x_n + \Delta x_n),$$

etc. Call

$$a_n := f(x_1, x_2, \dots, x_{n-1}, x_n + \Delta x_n) - f(x_1, x_2, \dots, x_n) \in \mathbb{R}_{\mathcal{F}}.$$

That is

$$f(x_1, x_2, \dots, x_{n-1}, x_n + \Delta x_n) = \alpha_n \oplus f(x_1, x_2, \dots, x_n).$$

I.e., it holds

$$\mathbb{R}_{\mathcal{F}} \in f(x_1 + \Delta x_1, x_2 + \Delta x_2, \dots, x_n + \Delta x_n) - f(x_1, x_2, \dots, x_n) = \sum_{i=1}^{n} \alpha_i.$$

Since the partial derivatives f_{x_i} exist, the above *H*-differences α_i , i = 1, ..., n exist in $\mathbb{R}_{\mathcal{F}}$ for small $\Delta x_i > 0$. In particular we define

$$\Delta x_i := \phi_i(t + \Delta t) - \phi_i(t), \quad \Delta t > 0, \quad i = 1, \dots n$$

(i.e.,

$$\phi_i(t + \Delta t) = x_i + \Delta x_i, \quad x_i := \phi_i(t).$$

Since ϕ_i , i = 1, ..., n are strictly increasing we have that $\Delta x_i > 0$. So as $\Delta t \to 0^+$, then $\Delta x_i \to 0^+$ by continuity of ϕ_i .

We observe that

$$\begin{split} & \lim_{\Delta t \to 0^+} D \left(\frac{f(\phi_1(t + \Delta t), \dots, \phi_n(t + \Delta t)) - f(\phi_i(t), \dots, \phi_n(t))}{\Delta t}, \\ & \sum_{i=1}^{n^*} f_{x_i}(x_1, \dots, x_n) \odot x_i'(t) \right) \\ &= \lim_{\Delta t \to 0^+} D \left(\frac{f(x_1 + \Delta x_1, \dots, x_n + \Delta x_n) - f(x_1, \dots, x_n)}{\Delta t}, \\ & \sum_{i=1}^{n^*} f_{x_i}(x_1, \dots, x_n) \odot x_i'(t) \right) \\ &= \lim_{\Delta t \to 0^+} D \left(\frac{\sum_{i=1}^{n} \alpha_i}{\Delta t}, \sum_{i=1}^{n^*} f_{x_i}(x_1, \dots, x_n) \odot x_i'(t) \right) \\ &\leq \lim_{\Delta t \to 0^+} D \left(\frac{f(x_1 + \Delta x_1, x_2 + \Delta x_2, \dots, x_n + \Delta x_n) - f(x_1, x_2 + \Delta x_2, \dots, x_n + \Delta x_n)}{\Delta t}, \\ & f_{x_1}(x_1, \dots, x_n) \odot x_1'(t) \right) \\ &+ \lim_{\Delta t \to 0^+} D \left(\frac{f(x_1, x_2 + \Delta x_2, \dots, x_n + \Delta x_n) - f(x_1, x_2, x_3 + \Delta x_3, \dots, x_n + \Delta x_n)}{\Delta t}, \\ & f_{x_2}(x_1, \dots, x_n) \odot x_2'(t) \right) \\ &+ \lim_{\Delta t \to 0^+} D \left(\frac{f(x_1, x_2, x_3 + \Delta x_3, \dots, x_n + \Delta x_n) - f(x_1, x_2, x_3, x_4 + \Delta x_4, \dots, x_n + \Delta x_n)}{\Delta t}, \\ & f_{x_3}(x_1, \dots, x_n) \odot x_3'(t) \right) \\ &+ \dots + \lim_{\Delta t \to 0^+} D \left(\frac{f(x_1, x_2, \dots, x_{n-1}, x_n + \Delta x_n) - f(x_1, x_2, \dots, x_n)}{\Delta t}, \\ & f_{x_n}(x_1, \dots, x_n) \odot x_n'(t) \right) \\ &= \lim_{\Delta t \to 0^+} D \left(\left(\frac{f(x_1 + \Delta x_1, x_2 + \Delta x_2, \dots, x_n + \Delta x_n) - f(x_1, x_2 + \Delta x_2, \dots, x_n + \Delta x_n)}{\Delta x_1} \right) \\ & \odot \frac{\Delta x_1}{\Delta t}, f_{x_1}(x_1, \dots, x_n) \odot x_1'(t) \right) \end{split}$$

$$+\lim_{\Delta t \to 0^+} D\left(\left(\frac{f(x_1, x_2 + \Delta x_2, \dots, x_n + \Delta x_n) - f(x_1, x_2, x_3 + \Delta x_3, \dots, x_n + \Delta x_n)}{\Delta x_2}\right)\right)$$

$$\odot \frac{\Delta x_2}{\Delta t}, f_{x_2}(x_1, \dots, x_n) \odot x_2'(t)$$

$$+\lim_{\Delta t \to 0^+} D\left(\left(f(x_1, x_2, x_3 + \Delta x_3, \dots, x_n + \Delta x_n)\right)\right)$$

$$-f(x_1, x_2, x_3, x_4 + \Delta x_4, \dots, x_n + \Delta x_n)/\Delta x_3\right) \odot \frac{\Delta x_3}{\Delta t}, f_{x_3}(x_1, \dots, x_n) \odot x_3'(t)$$

$$+ \dots + \lim_{\Delta t \to 0^+} D\left(\left(\frac{f(x_1, x_2, \dots, x_{n-1}, x_n + \Delta x_n) - f(x_1, \dots, x_n)}{\Delta x_n}\right)\right)$$

$$\odot \frac{\Delta x_n}{\Delta t}, f_{x_n}(x_1, \dots, x_n) \odot x_n'(t)\right)$$
(by Corollary A, [1])
$$= \lim_{\Delta t \to 0^+} D\left(\left(\frac{(FR) \int_{x_1}^{x_1 + \Delta x_1} f_{x_1}(t, x_2 + \Delta x_2, \dots, x_n + \Delta x_n) dt}{\Delta x_1}\right)\right)$$

$$\odot \frac{\Delta x_1}{\Delta t}, f_{x_1}(x_1, \dots, x_n) \odot x_1'(t)\right)$$

$$+\lim_{\Delta t \to 0^+} D\left(\left(\frac{(FR) \int_{x_2}^{x_2 + \Delta x_2} f_{x_2}(x_1, t, x_3 + \Delta x_3, \dots, x_n + \Delta x_n) dt}{\Delta x_2}\right)\right)$$

$$\odot \frac{\Delta x_2}{\Delta t}, f_{x_2}(x_1, \dots, x_n) \odot x_2'(t)\right)$$

$$+\lim_{\Delta t \to 0^+} D\left(\left(\frac{(FR) \int_{x_3}^{x_3 + \Delta x_3} f_{x_3}(x_1, x_2, t, x_4 + \Delta x_4, \dots, x_n + \Delta x_n) dt}{\Delta x_3}\right)\right)$$

$$\odot \frac{\Delta x_3}{\Delta t}, f_{x_3}(x_1, \dots, x_n) \odot x_3'(t)\right)$$

$$+\dots + \lim_{\Delta t \to 0^+} D\left(\left(\frac{(FR) \int_{x_{n-1}}^{x_3 + \Delta x_3} f_{x_3}(x_1, x_2, t, x_4 + \Delta x_4, \dots, x_n + \Delta x_n) dt}{\Delta x_3}\right)\right)$$

$$\odot \frac{\Delta x_3}{\Delta t}, f_{x_3}(x_1, \dots, x_n) \odot x_3'(t)\right)$$

$$+\dots + \lim_{\Delta t \to 0^+} D\left(\left(\frac{(FR) \int_{x_{n-1}}^{x_3 + \Delta x_3} f_{x_3}(x_1, x_2, t, x_4 + \Delta x_4, \dots, x_n + \Delta x_n) dt}{\Delta x_{n-1}}\right)$$

$$\odot \frac{\Delta x_{n-1}}{\Delta t}, f_{x_{n-1}}(x_1, \dots, x_n) \odot x_n'(t), f_{x_n}(x_1, \dots, x_n) \odot x_n'(t)\right)$$

(by Lemmas 3 and 4)

$$= x_1'(t) \lim_{\Delta t \to 0^+} \frac{1}{\Delta x_1} D \left((FR) \int_{x_1}^{x_1 + \Delta x_1} f_{x_1}(t, x_2 + \Delta x_2, \dots, x_n + \Delta x_n) dt, \right.$$

$$\Delta x_1 \odot f_{x_1}(x_1, \dots, x_n) \right)$$

$$+ x_2'(t) \lim_{\Delta t \to 0^+} \frac{1}{\Delta x_2} D \left((FR) \int_{x_2}^{x_2 + \Delta x_2} f_{x_2}(x_1, t, x_3 + \Delta x_3, \dots, x_n + \Delta x_n) dt, \right.$$

$$\Delta x_2 \odot f_{x_2}(x_1, \dots, x_n) \right)$$

$$+ x_3'(t) \lim_{\Delta t \to 0^+} \frac{1}{\Delta x_3} D \left((FR) \int_{x_3}^{x_3 + \Delta x_3} f_{x_3}(x_1, x_2, t, x_4 + \Delta x_4, \dots, x_n + \Delta x_n) dt, \right.$$

$$\Delta x_3 \odot f_{x_3}(x_1, \dots, x_n) \right) + \cdots$$

$$+ x_{n-1}'(t) \lim_{\Delta t \to 0^+} \frac{1}{\Delta x_{n-1}} D \left((FR) \int_{x_{n-1}}^{x_{n-1} + \Delta x_{n-1}} f_{x_{n-1}}(x_1, x_2, \dots, x_{n-2}, t, x_n + \Delta x_n) dt, \Delta x_{n-1} \odot f_{x_{n-1}}(x_1, \dots, x_n) \right)$$

$$= \sum_{i=1}^{n-1} x_i'(t) \lim_{\Delta t \to 0^+} \frac{1}{\Delta x_i} D \left((FR) \int_{x_i}^{x_i + \Delta x_i} f_{x_i}(x_1, x_2, \dots, x_{i-1}, t, x_{i+1} + \Delta x_{i+1}, \dots, x_n + \Delta x_n) dt, (FR) \int_{x_i}^{x_i + \Delta x_i} f_{x_i}(x_1, \dots, x_n) dt \right)$$

$$\text{(by Lemma 1 of [1])} \sum_{i=1}^{n-1} x_i'(t) \lim_{\Delta t \to 0^+} \frac{1}{\Delta x_i} \left(\int_{x_i}^{x_i + \Delta x_i} D(f_{x_i}(x_1, x_2, \dots, x_{i-1}, t, x_{i+1} + \Delta x_{i+1}, \dots, x_n + \Delta x_n), f_{x_i}(x_1, \dots, x_n) \right) dx_i$$

$$\text{(by Lemma 1 of [1])} \quad \text{(for some } \tau_i^* \in [x_i, x_i + \Delta x_i]$$

$$\sum_{i=1}^{n-1} x_i'(t) \lim_{\Delta t \to 0^+} D(f_{x_i}(x_1, x_2, \dots, x_{i-1}, \tau_i^*, x_{i+1} + \Delta x_{i+1}, \dots, x_n + \Delta x_n), f_{x_i}(x_1, \dots, x_n))$$

(as $\Delta t \to 0^+$, then all $\Delta x_i \to 0^+$ and thus $\tau_i^* \to x_i$, for all $i = 1, \ldots, n$)

$$= \sum_{i=1}^{n-1} x_i'(t) D(f_{x_i}(x_1, \dots, x_n), f_{x_i}(x_1, \dots, x_n))$$
$$= \sum_{i=1}^{n-1} x_i'(t) \cdot 0 = 0,$$

by continuity of f_{x_i} , i = 1, ..., n - 1. I.e., we have proved that

$$\left(\frac{dz}{dt}\right)_{+} = \sum_{i=1}^{n} {}^{*} \frac{dz}{dx_{i}} \odot \frac{dx_{i}}{dt}.$$

II) Call

$$\beta_1 := f(x_1, x_2, \dots, x_n) - f(x_1, x_2, \dots, x_{n-1}, x_n - \Delta x_n) \in \mathbb{R}_{\mathcal{F}}.$$

That is

$$f(x_1, x_2, \dots, x_n) = \beta_1 \oplus f(x_1, x_2, \dots, x_{n-1}, x_n - \Delta x_n).$$

Call

$$\beta_2 := f(x_1, x_2, \dots, x_{n-1}, x_n - \Delta x_n) - f(x_1, x_2, \dots, x_{n-2}, x_{n-1} - \Delta x_{n-1}, x_n - \Delta x_n) \in \mathbb{R}_{\mathcal{F}}.$$

That is

$$f(x_1, x_2, \dots, x_{n-1}, x_n - \Delta x_n) = \beta_2 \oplus f(x_1, x_2, \dots, x_{n-2}, x_{n-1} - \Delta x_{n-1}, x_n - \Delta x_n).$$

Call

$$\beta_3 := f(x_1, x_2, \dots, x_{n-2}, x_{n-1} - \Delta x_{n-1}, x_n - \Delta x_n) - f(x_1, x_2, \dots, x_{n-3}, x_{n-2} - \Delta x_{n-2}, x_{n-1} - \Delta x_{n-1}, x_n - \Delta x_n) \in \mathbb{R}_{\mathcal{F}}.$$

That is

$$f(x_1, x_2, \dots, x_{n-2}, x_{n-1} - \Delta x_{n-1}, x_n - \Delta x_n)$$

$$= \beta_3 \oplus f(x_1, x_2, \dots, x_{n-3}, x_{n-2} - \Delta x_{n-2}, x_{n-1} - \Delta x_{n-1}, x_n - \Delta x_n),$$

etc. Call

$$\beta_n := f(x_1, x_2 - \Delta x_2, \dots, x_n - \Delta x_n) - f(x_1 - \Delta x_1, x_2 - \Delta x_2, \dots, x_n - \Delta x_n) \in \mathbb{R}_{\mathcal{F}}.$$

That is

$$f(x_1, x_2 - \Delta x_2, \dots, x_n - \Delta x_n) = \beta_n \oplus f(x_1 - \Delta x_1, x_2 - \Delta x_2, \dots, x_n - \Delta x_n).$$

I.e., it holds

$$\mathbb{R}_{\mathcal{F}} \ni f(x_1, x_2, \dots, x_n) - f(x_1 - \Delta x_1, x_2 - \Delta x_2, \dots, x_n - \Delta x_n) = \sum_{i=1}^{n} {}^*\beta_i.$$

Since the partial derivatives f_{x_i} exist, the above H-differences β_i , $i = 1, \ldots, n$ exist in $\mathbb{R}_{\mathcal{F}}$ for small $\Delta x_i > 0$. In particular we define $\Delta x_i := \phi_i(t) - \phi_i(t - \Delta t)$, $\Delta t > 0$, $i = 1, \ldots, n$ (i.e., $\phi_i(t - \Delta t) = x_i - \Delta x_i$, $x_i := \phi_i(t)$). Since ϕ_i , $i = 1, \ldots, n$ are strictly increasing we have that $\Delta x_i > 0$. So as $\Delta t \to 0^+$, then $\Delta x_i \to 0^+$ by continuity of ϕ_i .

We observe that

$$D \begin{pmatrix} f(x_1, x_2, \dots, x_{n-2}, x_{n-1} - \Delta x_{n-1}, x_n - \Delta x_n) \\ -f(x_1, x_2, \dots, x_{n-3}, x_{n-2} - \Delta x_{n-2}, x_{n-1} - \Delta x_{n-1}, x_n - \Delta x_n) \\ \Delta t \end{pmatrix},$$

$$f_{x_{n-2}}(x_1, \dots, x_n) \odot x'_{n-2}(t) + \dots + \lim_{\Delta t \to 0^+} D \begin{pmatrix} \frac{f(x_1, x_2 - \Delta x_2, \dots, x_n - \Delta x_n) - f(x_1 - \Delta x_1, x_2 - \Delta x_2, \dots, x_n - \Delta x_n)}{\Delta t} \\ -f_{x_1}(x_1, \dots, x_n) \odot x'_1(t) \end{pmatrix}$$

$$= \lim_{\Delta t \to 0^+} D \begin{pmatrix} \left(\frac{f(x_1, x_2, \dots, x_n) - f(x_1, x_2, \dots, x_{n-1}, x_n - \Delta x_n)}{\Delta x} \\ -\Delta x_n + \frac{\Delta x_n}{\Delta t}, f_{x_n}(x_1, \dots, x_n) \odot x'_n(t) \\ -\Delta x_n + \frac{\Delta x_n}{\Delta t}, f_{x_{n-1}}(x_1, \dots, x_n) \odot x'_{n-1}(t) \\ -\Delta x_{n-1} + \frac{\Delta x_n}{\Delta t}, f_{x_{n-1}}(x_1, \dots, x_n) \odot x'_{n-1}(t) \\ -f(x_1, x_2, \dots, x_{n-2}, x_{n-1} - \Delta x_{n-1}, x_n - \Delta x_n) \\ -f(x_1, x_2, \dots, x_{n-2}, x_{n-1} - \Delta x_{n-1}, x_n - \Delta x_n) \\ -f(x_1, x_2, \dots, x_{n-2}, x_{n-1} - \Delta x_{n-1}, x_n - \Delta x_n) \\ -f(x_1, x_2, \dots, x_{n-2}, x_{n-1} - \Delta x_{n-1}, x_n - \Delta x_n) \\ -\Delta x_{n-2} + \frac{\Delta x_{n-2}}{\Delta t}, f_{x_{n-2}}(x_1, \dots, x_n) \odot x'_{n-2}(t) \\ -\Delta x_{n-2} + \frac{\Delta x_{n-2}}{\Delta t}, f_{x_{n-2}}(x_1, \dots, x_n) \odot x'_{n-2}(t) \end{pmatrix} + \dots + \lim_{\Delta t \to 0^+} D \begin{pmatrix} \left(\frac{f(x_1, x_2 - \Delta x_2, \dots, x_n - \Delta x_n) - f(x_1 - \Delta x_1, x_2 - \Delta x_2, \dots, x_n - \Delta x_n)}{\Delta x_1} \\ \odot \frac{\Delta x_1}{\Delta t}, f_{x_1}(x_1, \dots, x_n) \odot x'_1(t) \\ -\sum_{\Delta t \to 0^+} D \begin{pmatrix} \left(\frac{(FR)}{\Delta t}, f_{x_{n-1}}(x_1, x_1, \dots, x_n) \odot x'_{n-1}(t) \\ -\sum_{\Delta t \to 0^+} D \begin{pmatrix} \left(\frac{(FR)}{\Delta t}, f_{x_{n-1}}(x_1, x_1, \dots, x_n) \odot x'_{n-1}(t) \\ -\sum_{\Delta t \to 0^+} D \begin{pmatrix} \left(\frac{(FR)}{\Delta t}, f_{x_{n-1}}(x_1, \dots, x_n) \odot x'_{n-1}(t) \\ -\sum_{\Delta t \to 0^+} D \begin{pmatrix} \left(\frac{(FR)}{\Delta t}, f_{x_{n-1}}(x_1, \dots, x_n) \odot x'_{n-1}(t) \\ -\sum_{\Delta t \to 0^+} D \begin{pmatrix} \left(\frac{(FR)}{\Delta t}, f_{x_{n-1}}(x_1, \dots, x_n) \odot x'_{n-1}(t) \\ -\sum_{\Delta t \to 0^+} D \begin{pmatrix} \left(\frac{(FR)}{\Delta t}, f_{x_{n-1}}(x_1, \dots, x_n) \odot x'_{n-1}(t) \\ -\sum_{\Delta t \to 0^+} D \begin{pmatrix} \left(\frac{(FR)}{\Delta t}, f_{x_{n-1}}(x_1, \dots, x_n) \odot x'_{n-1}(t) \\ -\sum_{\Delta t \to 0^+} D \begin{pmatrix} \left(\frac{(FR)}{\Delta t}, f_{x_{n-1}}(x_1, \dots, x_n) \odot x'_{n-1}(t) \\ -\sum_{\Delta t \to 0^+} D \begin{pmatrix} \left(\frac{(FR)}{\Delta t}, f_{x_{n-1}}(x_1, \dots, x_n) \odot x'_{n-1}(t) \\ -\sum_{\Delta t \to 0^+} D \begin{pmatrix} \left(\frac{(FR)}{\Delta t}, f_{x_{n-1}}(x_1, \dots, x_n) \odot x'_{n-1}(t) \\ -\sum_{\Delta t \to 0^+} D \begin{pmatrix} \left(\frac{(FR)}{\Delta t}, f_{x_{n-1}}(x_1, \dots, x_n) \odot x'_{n-1}(t)$$

$$D\left(\frac{(FR)\int_{x_{n-2}-\Delta x_{n-2}}^{x_{n-2}}f_{x_{n-2}}(x_1,x_2,\ldots,x_{n-3},t,x_{n-1}-\Delta x_{n-1},x_n-\Delta x_n)dt}{\Delta x_{n-2}}\right)$$

$$\odot\frac{\Delta x_{n-2}}{\Delta t},f_{x_{n-2}}(x_1,\ldots,x_n)\odot x_{n-2}'(t)\right)+\cdots+\lim_{\Delta t\to 0^+}$$

$$D\left(\left(\frac{(FR)\int_{x_1-\Delta x_1}^{x_1}f_{x_1}(t,x_2-\Delta x_2,\ldots,x_n-\Delta x_n)dt}{\Delta x_1}\right)\right)$$

$$\odot\frac{\Delta x_1}{\Delta t},f_{x_1}(x_1,\ldots,x_n)\odot x_1'(t)\right)$$
(by Lemmas 3, 4)
$$x_{n-1}'(t)\lim_{\Delta t\to 0^+}\frac{1}{\Delta x_{n-1}}D\left((FR)\right)$$

$$\int_{x_{n-1}-\Delta x_{n-1}}^{x_{n-1}}f_{x_{n-1}}(x_1,x_2,\ldots,x_{n-2},t,x_n-\Delta x_n)dt,\Delta x_{n-1}\odot f_{x_{n-1}}(x_1,\ldots,x_n)\right)$$

$$+x_{n-2}'(t)\lim_{\Delta t\to 0^+}\frac{1}{\Delta x_{n-2}}D\left((FR)\int_{x_{n-2}-\Delta x_{n-2}}^{x_{n-2}}f_{x_{n-2}}(x_1,x_2,\ldots,x_{n-3},t,x_{n-1}-\Delta x_{n-1},x_n-\Delta x_n)dt,\Delta x_{n-2}\odot f_{x_{n-2}}(x_1,\ldots,x_n)\right)$$

$$+\cdots+x_1'(t)\lim_{\Delta t\to 0^+}\frac{1}{\Delta x_1}$$

$$D\left((FR)\int_{x_1-\Delta x_1}^{x_1}f_{x_1}(t,x_2-\Delta x_2,\ldots,x_n-\Delta x_n)dt,\Delta x_1\odot f_{x_1}(x_1,\ldots,x_n)\right)$$

$$=\sum_{i=1}^{n-1}x_i'(t)\lim_{\Delta t\to 0^+}\frac{1}{\Delta x_i}D\left((FR)\int_{x_i-\Delta x_i}^{x_i}f_{x_i}(x_1,x_2,\ldots,x_{i-1},t,x_{n-1}-\Delta x_{n-1},x_n-\Delta x_{n-1},x_n-\Delta x_n)\right)dt,(FR)\int_{x_i-\Delta x_i}^{x_i}f_{x_i}(x_1,\ldots,x_n)dt\right)$$
(by Lemma 1 of [1])
$$\sum_{i=1}^{n-1}x_i'(t)\lim_{\Delta t\to 0^+}\frac{1}{\Delta x_i}\left(\int_{x_i-\Delta x_i}^{x_i}D(f_{x_i}(x_1,x_2,\ldots,x_{i-1},t,x_{n-1}-\Delta x_{n-1},x_n-\Delta x_{n-1},x_n-\Delta x_n),f_{x_i}(x_1,\ldots,x_n))dt\right)$$

$$\leq\sum_{i=1}^{n-1}x_i'(t)\lim_{\Delta t\to 0^+}\frac{1}{\Delta x_i}\left(\sup_{\tau\in[x_i-\Delta x_i,x_i]}D(f_{x_i}(x_1,x_2,\ldots,x_{i-1},\tau,x_{i+1}-\Delta x_{i+1},\ldots,x_{n-1}-\Delta x_{n-1},x_n-\Delta x_n),f_{x_i}(x_1,\ldots,x_n))\right)\Delta x_i$$

(for some
$$\tau_i^* \in [x_i - \Delta x_i, x_i]$$
)

(by Lemma 1 of [1])
$$\sum_{i=1}^{n-1} x_i'(t) \lim_{\Delta t \to 0^+} D(f_{x_i}(x_1, x_2, \dots, x_{i-1}, x_i^*, x_{i+1} - \Delta x_{i+1}, \dots, x_{n-1} - \Delta x_{n-1}, x_n - \Delta x_n), f_{x_i}(x_1, \dots, x_n))$$

(as $\Delta t \to 0^+$, then all $\Delta x_i \to 0^+$ and thus $\tau_i^* \to x_i$, for all $i = 1, \ldots, n$)

$$= \sum_{i=1}^{n-1} x_i'(t) D(f_{x_i}(x_1, \dots, x_n), f_{x_i}(x_1, \dots, x_n))$$

$$= \sum_{i=1}^{n-1} x_i'(t) \cdot 0 = 0,$$

by continuity of f_{x_i} , i = 1, ..., n - 1. I.e., we have proved that

$$\left(\frac{dz}{dt}\right)_{-} = \sum_{i=1}^{n} \frac{dz}{dx_i} \odot \frac{dx_i}{dt}.$$

When t = a, or b, then $\frac{dz}{dt}$ equals $\left(\frac{dz}{dt}\right)_+$, or $\left(\frac{dz}{dt}\right)_-$, respectively. Clearly here

$$\frac{dx_i}{dt}\Big|_{t=a} = \left(\frac{dx_i}{dt}\right)_+\Big|_{t=a}$$
, and $\frac{dx_i}{dt}\Big|_{t=b} = \left(\frac{dx_i}{dt}\right)_-\Big|_{t=b}$,

etc., the same proof as before. The theorem now is proved.

We need the following

Lemma 5. Let f be a fuzzy continuous function from the open set $U \subseteq \mathbb{R}^n$, $n \in \mathbb{N}$, into $\mathbb{R}_{\mathcal{F}}$. Then $f_{\pm}^{(r)}$ are continuous functions from U into \mathbb{R} , for all $r \in [0,1]$.

Proof. Let $x_m, x \in U$, $m \in \mathbb{N}$, be such that $x_m \to x$ as $m \to +\infty$. Then by continuity of f we get $D(f(x_m), f(x)) \to 0$, as $m \to +\infty$. Hence we have

$$D(f(x_m), f(x)) = \sup_{r \in [0,1]} \max\{|(f(x_m))_-^{(r)} - (f(x))_-^{(r)}|, |(f(x_m))_+^{(r)} - (f(x))_+^{(r)}|\} \to 0.$$

Therefore $|(f(x_m))_-^{(r)} - (f(x))_-^{(r)}| \to 0$ and $|(f(x_m))_+^{(r)} - (f(x))_+^{(r)}| \to 0$, as $m \to +\infty$, for all $r \in [0,1]$. Consequently $(f(x_m))_{\pm}^{(r)} \to (f(x))_{\pm}^{(r)}$, proving that $f_{\pm}^{(r)} \in C(U,\mathbb{R})$, for all $0 \le r \le 1$.

We present the interchange of the order of H-fuzzy differentiation.

Theorem 4. Let U be an open subset of \mathbb{R}^n , $n \in \mathbb{N}$, and $f: U \to \mathbb{R}_{\mathcal{F}}$ be a fuzzy continuous function. Assume that all H-fuzzy partial derivatives of f up to order $m \in \mathbb{N}$ exist and are fuzzy continuous. Let $x := (x_1, \ldots, x_n) \in U$. Then the H-fuzzy mixed partial derivative of order k, $D_{x_{\ell_1}, \ldots, x_{\ell_k}} f(x)$ is unchanged when the indices ℓ_1, \ldots, ℓ_k are permuted. Each ℓ_i is a positive integer $\leq n$. Here some or all of ℓ_i 's can be equal. Also $k = 2, \ldots, m$ and there are n^k partials of order k.

Proof. We only need to demonstrate the proof for the case n=k=2. The rest is true by induction on k, and similarly true for n>2. So here $z=f(x,y):U\subseteq\mathbb{R}^2\to\mathbb{R}_{\mathcal{F}}$ and $\frac{\partial^2 f}{\partial x^2},\,\frac{\partial^2 f}{\partial y^2},\,\frac{\partial^2 f}{\partial x\partial y},\,\frac{\partial^2 f}{\partial y\partial x}$ exist and are fuzzy continuous functions from U into $\mathbb{R}_{\mathcal{F}}$. We make use of Theorem 5.2 from [6] repeatedly. Here we have

$$[f(x,y)]^r = [(f(x,y))_-^{(r)}, (f(x,y))_+^{(r)}], \quad 0 \le r \le 1.$$

By that theorem and the above assumptions $\frac{\partial}{\partial x}(f(x,y))_{\pm}^{(r)}$ exist and

$$\left[\frac{\partial}{\partial x}f(x,y)\right]^r = \left[\frac{\partial}{\partial x}(f(x,y))_-^{(r)}, \frac{\partial}{\partial x}(f(x,y))_+^{(r)}\right],$$

for all $0 \le r \le 1$ and all $(x,y) \in U$. Furthermore, the same way $\frac{\partial^2}{\partial y \partial x} (f(x,y))_{\pm}^{(r)}$ exist and

$$\left[\frac{\partial^2}{\partial y \partial x} f(x, y)\right]^r = \left[\frac{\partial^2}{\partial y \partial x} (f(x, y))_-^{(r)}, \frac{\partial^2}{\partial y \partial x} (f(x, y))_+^{(r)}\right],$$

for all $0 \le r \le 1$ and all $(x, y) \in U$. Similarly we obtain

$$\left[\frac{\partial^2}{\partial x \partial y} f(x,y)\right]^r = \left[\frac{\partial^2}{\partial x \partial y} (f(x,y))_-^{(r)}, \frac{\partial^2}{\partial x \partial y} (f(x,y))_+^{(r)}\right],$$

for all $0 \le r \le 1$ and all $(x, y) \in U$.

Clearly it also holds that

$$\left[\frac{\partial^2}{\partial x^2}f(x,y)\right]^r = \left[\frac{\partial^2}{\partial x^2}(f(x,y))_-^{(r)}, \frac{\partial^2}{\partial x^2}(f(x,y))_+^{(r)}\right],$$

and

$$\left[\frac{\partial^2}{\partial y^2}f(x,y)\right]^r = \left[\frac{\partial^2}{\partial y^2}(f(x,y))_-^{(r)}, \frac{\partial^2}{\partial y^2}(f(x,y))_+^{(r)}\right],$$

for all $0 \le r \le 1$ and all $(x,y) \in U$. By Lemma 5 we find that

$$\frac{\partial^2}{\partial x^2}(f(x,y))_{\pm}^{(r)}, \frac{\partial^2}{\partial y^2}(f(x,y))_{\pm}^{(r)}, \frac{\partial^2}{\partial x \partial y}(f(x,y))_{\pm}^{(r)}, \frac{\partial^2}{\partial y \partial x}(f(x,y))_{\pm}^{(r)}$$

are all continuous for any $r \in [0, 1]$. But by basic real analysis, Theorem 6-20, p. 121 of [4] we have

$$\frac{\partial^2}{\partial x \partial y} (f(x,y))_{\pm}^{(r)} = \frac{\partial^2}{\partial y \partial x} (f(x,y))_{\pm}^{(r)},$$

for any $r \in [0,1]$. Thus we get

$$\left[\frac{\partial^2}{\partial x \partial y} f(x, y)\right]^r = \left[\frac{\partial^2}{\partial y \partial x} f(x, y)\right]^r,$$

for all $0 \le r \le 1$. That is the *H*-fuzzy partial derivatives are equal, $\frac{\partial^2}{\partial x \partial y} f(x, y) = \frac{\partial^2 f(x, y)}{\partial u \partial x}$ for all $(x, y) \in U$.

Finally it follows the multivariate Fuzzy Taylor's formula.

Theorem 5. Let U be an open convex subset of \mathbb{R}^n , $n \in \mathbb{N}$ and $f: U \to \mathbb{R}_{\mathcal{F}}$ be a fuzzy continuous function. Assume that all H-fuzzy partial derivatives of f up to order $m \in \mathbb{N}$ exist and are fuzzy continuous. Let $z := (z_1, \ldots, z_n)$, $x_0 := (x_{01}, \ldots, x_{0n}) \in U$ such that $z_i \geq x_{0i}$, $i = 1, \ldots, n$. Let $0 \leq t \leq 1$, we define $x_i := x_{0i} + t(z_i - x_{0i})$, $i = 1, 2, \ldots, n$ and $g_z(t) := f(x_0 + t(z - x_0))$. (Clearly $x_0 + t(z - x_0) \in U$.) Then for $N = 1, \ldots, m$ we obtain

(12)
$$g_z^{(N)}(t) = \left[\left(\sum_{i=1}^n {}^*(z_i - x_{0i}) \odot \frac{\partial}{\partial x_i} \right)^N f \right] (x_1, x_2, \dots, x_n).$$

Furthermore it holds the following fuzzy multivariate Taylor formula

(13)
$$f(z) = f(x_0) \oplus \sum_{N=1}^{m-1} \frac{g_z^{(N)}(0)}{N!} \oplus \mathcal{R}_m(0,1),$$

where

(14)
$$\mathcal{R}_m(0,1) := (FR) \int_0^1 \left(\int_0^{s_1} \cdots \left(\int_0^{s_{m-1}} g_z^{(m)}(s_m) ds_m \right) ds_m \right) ds_{m-1} \cdots ds_1.$$

Note. (Explaining formula (12)). When N=n=2 we have $(z_i\geq x_{0i},$ i=1,2)

$$g_z(t) = f(x_{01} + t(z_1 - x_{01}), x_{02} + t(z_2 - x_{02})), \quad 0 \le t \le 1.$$

We apply Theorems 3 and 4 repeatedly, etc. Thus we have

$$g'_z(t) = (z_1 - x_{01}) \odot \frac{\partial f}{\partial x_1}(x_1, x_2) \oplus (z_2 - x_{02}) \odot \frac{\partial f}{\partial x_2}(x_1, x_2).$$

Furthermore it holds

(15)
$$g_z''(t) = (z_1 - x_{01})^2 \odot \frac{\partial^2 f}{\partial x_1^2}(x_1, x_2) \oplus 2(z_1 - x_{01}) \cdot (z_2 - x_{02})$$
$$\odot \frac{\partial^2 f(x_1, x_2)}{\partial x_1 \partial x_2} \oplus (z_2 - x_{02})^2 \odot \frac{\partial^2 f}{\partial x_2^2}(x_1, x_2).$$

When n=2 and N=3 we get

(16)
$$g_z'''(t) = (z_1 - x_{01})^3 \odot \frac{\partial^3 f}{\partial x_1^3} (x_1, x_2) \oplus 3(z_1 - x_{01})^2 (z_2 - x_{02})$$
$$\odot \frac{\partial^3 f(x_1, x_2)}{\partial x_1^2 \partial x_2} \oplus 3(z_1 - x_{01}) (z_2 - x_{02})^2 \cdot \frac{\partial^3 f(x_1, x_2)}{\partial x_1 \partial x_2^2}$$
$$\oplus (z_2 - x_{02})^3 \odot \frac{\partial^3 f}{\partial x_2^3} (x_1, x_2).$$

When n=3 and N=2 we obtain $(z_i \geq x_{0i}, i=1,2,3)$

$$(17) \ g_z''(t) = (z_1 - x_{01})^2 \odot \frac{\partial^2 f}{\partial x_1^2}(x_1, x_2, x_3) \oplus (z_2 - x_{02})^2 \odot \frac{\partial^2 f}{\partial x_2^2}(x_1, x_2, x_3)$$

$$\oplus (z_3 - x_{03})^2 \odot \frac{\partial^2 f}{\partial x_3^2}(x_1, x_2, x_3) \oplus 2(z_1 - x_{01})(z_2 - x_{02})$$

$$\odot \frac{\partial^2 f(x_1, x_2, x_3)}{\partial x_1 \partial x_2} \oplus 2(z_2 - x_{02})(z_3 - x_{03})$$

$$\odot \frac{\partial^2 f(x_1, x_2, x_3)}{\partial x_2 \partial x_3} \oplus 2(z_3 - x_{03})(z_1 - x_{01}) \odot \frac{\partial^2 f}{\partial x_3 \partial x_1}(x_1, x_2, x_3),$$

etc.

Proof of Theorem 5. Let $z := (z_1, ..., z_n), x_0 := (x_{01}, ..., x_{0n}) \in U,$ $n \in \mathbb{N}$, such that $z_i > x_{0i}, i = 1, 2, ..., n$. We define

$$x_i := \phi_i(t) := x_{0i} + t(z_i - x_{0i}), \quad 0 \le t \le 1; \quad i = 1, 2, \dots, n.$$

Thus $\frac{dx_i}{dt} = z_i - x_{0i} > 0$. Consider

$$Z := g_z(t) := f(x_0 + t(z - x_0)) = f(x_{01} + t(z_1 - x_{01}), \dots, x_{0n} + t(z_n - x_{0n}))$$
$$= f(\phi_1(t), \dots, \phi_n(t)).$$

Since by assumptions $f: U \to \mathbb{R}_{\mathcal{F}}$ is fuzzy continuous, also f_{x_i} exist and are fuzzy continuous, by Theorem 3 (11) we get

$$\frac{dZ(x_1, \dots, x_n)}{dt} = \sum_{i=1}^{n} \frac{\partial Z(x_1, \dots, x_n)}{\partial x_i} \odot \frac{dx_i}{dt}$$
$$= \sum_{i=1}^{n} \frac{\partial f(x_1, \dots, x_n)}{\partial x_i} \odot (z_i - x_{0i}).$$

I.e.,

$$g'_z(t) = \sum_{i=1}^n {}^*\frac{\partial f(x_1, \dots, x_m)}{\partial x_i} \odot (z_i - x_{0i}).$$

Next we see

$$\frac{d^2 Z}{dt^2} = g_z''(t) = \frac{d}{dt} \left(\sum_{i=1}^{n} \frac{\partial f(x_1, \dots, x_n)}{\partial x_i} \odot (z_i - x_{0i}) \right)$$

$$= \sum_{i=1}^{n} (z_i - x_{0i}) \odot \frac{d}{dt} \left(\frac{\partial f(x_1, \dots, x_n)}{\partial x_i} \right)$$

$$= \sum_{i=1}^{n} (z_i - x_{0i}) \odot \left[\sum_{j=1}^{n} \frac{\partial^2 f(x_1, \dots, x_n)}{\partial x_j \partial x_i} \odot (z_j - x_{0j}) \right]$$

$$= \sum_{i=1}^{n} \sum_{j=1}^{n} \frac{\partial^2 f(x_1, \dots, x_n)}{\partial x_j \partial x_i} \odot (z_i - x_{0i}) \cdot (z_j - x_{0j}).$$

That is

$$g_z''(t) = \sum_{i=1}^n \sum_{j=1}^n \frac{\partial^2 f(x_1, \dots, x_m)}{\partial x_j \partial x_i} \odot (z_i - x_{0i}) \cdot (z_j - x_{0j}).$$

The last is true by Theorem 3 (11) under the additional assumptions that f_{x_i} ; $\frac{\partial^2 f}{\partial x_j \partial x_i}$, $i, j = 1, 2, \dots, n$ exist and are fuzzy continuous.

Working similarly, we find

$$\frac{d^{3}Z}{dt^{3}} = g_{z}^{""}(t) = \frac{d}{dt} \left(\sum_{i=1}^{n} \sum_{j=1}^{n} \frac{\partial^{2}f(x_{1}, \dots, x_{n})}{\partial x_{j}\partial x_{i}} \odot (z_{i} - x_{0i}) \cdot (z_{j} - x_{0j}) \right)
= \sum_{i=1}^{n} \sum_{j=1}^{n} (z_{i} - x_{0i}) \cdot (z_{j} - x_{0j}) \frac{d}{dt} \left(\frac{\partial^{2}f(x_{1}, \dots, x_{n})}{\partial x_{j}\partial x_{i}} \right)
= \sum_{i=1}^{n} \sum_{j=1}^{n} (z_{i} - x_{0i}) \cdot (z_{j} - x_{0j}) \left[\sum_{k=1}^{n} \frac{\partial^{3}f(x_{1}, \dots, x_{n})}{\partial x_{k}\partial x_{j}\partial x_{i}} \odot (z_{k} - x_{0k}) \right]
= \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{k=1}^{n} \frac{\partial^{3}f(x_{1}, \dots, x_{n})}{\partial x_{k}\partial x_{j}\partial x_{i}} \odot (z_{i} - x_{0j}) \cdot (z_{k} - x_{0k}).$$

That is,

$$g_z'''(t) = \sum_{i=1}^n \sum_{j=1}^n \sum_{k=1}^n \frac{\partial^3 f(x_1, \dots, x_n)}{\partial x_k \partial x_j \partial x_i} \odot (z_i - x_{0i}) \cdot (z_j - x_{0j}) \cdot (z_k - x_{0k}).$$

That last is true by Theorem 3 (11) under the additional assumptions that

$$\frac{\partial^3 f(x_1, \dots, x_n)}{\partial x_k \partial x_j \partial x_i}, \quad i, j, k = 1, \dots, n$$

do exist and are fuzzy continuous, etc. In general, one obtains that for $N = 1, \ldots, m \in \mathbb{N}$,

$$g_z^{(N)}(t) = \sum_{i_1=1}^n \sum_{i_2=1}^n \cdots \sum_{i_N=1}^n \frac{\partial^N f(x_1, \dots, x_n)}{\partial x_{i_N} \partial x_{i_{N-1}} \cdots \partial x_{i_1}} \odot \prod_{r=1}^N (z_{i_r} - x_{0i_r}),$$

which by Theorem 4 is the same as (12) for the case $z_i > x_{0i}$, see also (15), (16), and (17). The last is true by Theorem 3 (11) under the assumptions that all H-partial derivatives of f up to order m exist and they are all fuzzy continuous including f itself.

Next let $t_{\tilde{m}} \to \tilde{t}$, as $\tilde{m} \to +\infty$, $t_{\tilde{m}}$, $\tilde{t} \in [0,1]$. Consider

$$x_{i\tilde{m}} := x_{0i} + t_{\tilde{m}}(z_i - x_{0i})$$

and

$$\tilde{x}_i := x_{0i} + \tilde{t}(z_i - x_{0i}), \quad i = 1, 2, \dots, n.$$

That is

$$x_{\tilde{m}} = (x_{1\tilde{m}}, x_{2\tilde{m}}, \dots, x_{n\tilde{m}})$$
 and $\tilde{x} = (\tilde{x}_1, \dots, \tilde{x}_n)$ in U .

Then $x_{\tilde{m}} \to \tilde{x}$, as $\tilde{m} \to +\infty$. Clearly using the properties of *D*-metric and under the theorem's assumptions, we obtain that

$$g_z^{(N)}(t)$$
 is fuzzy continuous for $N=0,1,\ldots,m$.

Then by Theorem 1 [1], from the univariate fuzzy Taylor formula, we obtain

$$g_z(1) = g_z(0) \oplus g_z'(0) \oplus \frac{g_z''(0)}{2!} \oplus \cdots \oplus \frac{g_z^{(m-1)}(0)}{(m-1)!} \oplus \mathcal{R}_m(0,1),$$

where

$$\mathcal{R}_m(0,1) := (FR) \int_0^1 \left(\int_0^{s_1} \cdots \left(\int_0^{s_{m-1}} g_z^{(m)}(s_m) ds_m \right) ds_m \right) ds_{m-1} \cdots ds_1.$$

By Lemma 4, [1] and Corollary 13.2, p. 644, [5], the remainder $\mathcal{R}_m(0,1)$ exist in $\mathbb{R}_{\mathcal{F}}$. I.e., we get the multivariate fuzzy Taylor formula

$$f(z) = f(x_0) \oplus g'_z(0) \oplus \frac{g''_z(0)}{2!} \oplus \cdots \oplus \frac{g_z^{(m-1)}(0)}{(m-1)!} \oplus \mathcal{R}_m(0,1),$$

when $z_i > x_{0i}$, i = 1, 2, ..., n.

Finally, we would like to take care of the case that some $x_{0i} = z_i$. Without loss of generality we may assume that $x_{01} = z_1$, and $z_i > x_{0i}$, i = 2, ..., n. In this case we define

$$\tilde{Z} := \tilde{g}_z(t) := f(x_{01}, x_{02} + t(z_2 - x_{02}), \dots, x_{0n} + t(z_n - x_{0n})).$$

Therefore one has

$$\tilde{g}'_z(t) = \sum_{i=2}^{n} \frac{\partial f(x_{01}, x_2, \dots, x_n)}{\partial x_i} \odot (z_i - x_{0i}),$$

and in general we find

$$\tilde{g}_{z}^{(N)}(t) = \sum_{i_{2}=2,\dots,i_{N}=2}^{n} \frac{\partial^{N} f(x_{01}, x_{2}, \dots, x_{n})}{\partial x_{i_{N}} \partial x_{N-1} \cdots \partial x_{i_{2}}} \odot \prod_{r=2}^{N} (z_{i_{r}} - x_{0i_{r}}),$$

for $N = 1, ..., m \in \mathbb{N}$. Notice that all $\tilde{g}_z^{(N)}$, N = 0, 1, ..., m are fuzzy continuous and

$$\tilde{g}_z(0) = f(x_{01}, x_{02}, \dots, x_{0n}), \quad \tilde{g}_z(1) = f(x_{01}, z_2, z_3, \dots, z_n).$$

Then one can write down a fuzzy Taylor formula, as above, for \tilde{g}_z . But $\tilde{g}_z^{(N)}(t)$ coincides with $g_z^{(N)}(t)$ formula at $z_1 = x_{01} = x_1$. That is both Taylor formulae in that case coincide.

At last we remark that if $z=x_0$, then we define $Z^*:=g_z^*(t):=f(x_0)=:c\in\mathbb{R}_{\mathcal{F}}$ a constant. Since $c=c+\tilde{o}$, that is $c-c=\tilde{o}$, we obtain the *H*-fuzzy derivative $(c)'=\tilde{o}$. Consequently we have that

$$g_z^{*(N)}(t) = \tilde{o}, \quad N = 1, \dots, m.$$

The last coincide with the $g_z^{(N)}$ formula, established earlier, if we apply there $z = x_0$. And, of course, the fuzzy Taylor formula now can be applied trivially for g_z^* . Furthermore in that case it coincides with the Taylor formula proved earlier for g_z . We have established a multivariate fuzzy Taylor formula for the case of $z_i \geq x_{0i}$, i = 1, 2, ..., n. That is (12)–(14) are true.

At last we give the following useful

Corollary 1. Let U be an open convex subset of \mathbb{R}^n , $n \in \mathbb{N}$, and $f: U \to \mathbb{R}_{\mathcal{F}}$ be a fuzzy continuous function. Assume that all the first H-fuzzy partial derivatives f_{x_i} of f exist and are fuzzy continuous. Let $z := (z_1, \ldots, z_n)$, $x_0 := (x_{01}, \ldots, x_{0n}) \in U$ such that $z_i \geq x_{0i}$, $i = 1, \ldots, n$. Let $0 \leq t \leq 1$, we define $x_i := x_{0i} + t(z_i - x_{0i})$, $i = 1, 2, \ldots, n$ and $g_z(t) := f(x_0 + t(z - x_0))$. Then

(18)
$$g'_z(t) = \sum_{i=1}^n {}^*\frac{\partial f(x_1, \dots, x_n)}{\partial x_i} \odot (z_i - x_{0i}).$$

Furthermore it holds

(19)
$$f(z) = f(x_0) \oplus (FR) \int_0^1 g_z'(s) ds$$

= $f(x_0) \oplus \sum_{i=1}^n (z_i - x_{0i}) \odot (FR) \int_0^1 \frac{\partial f(x_1(s), \dots, x_n(s))}{\partial x_i} ds$.

Proof. By Theorem 5, case of m = 1. The second part of (19) is valid by Theorem 2.6 of [9]. Here $x_i(s) = x_{0i} + s(z_i - x_{0i}), s \in [0, 1], i = 1, ..., n$ with $z_i \geq x_{0i}$.

Comment. Theorem 5 and Corollary 1 are still valid when U is a compact convex subset of \mathbb{R}^n such that $U \subseteq W$, where W is an open subset of \mathbb{R}^n . Now $f: W \to \mathbb{R}_{\mathcal{F}}$ and it has all the properties of f as in Theorem 5 and Corollary 1. Clearly here $x_0, z \in U$.

References

- [1] George A. Anastassiou. Rate of convergence of Fuzzy neural network operators, univariate case, Submitted.
- [2] George A. Anastassiou. Univariate Fuzzy-Random neural network approximation operators, Submitted.
- [3] George A. Anastassiou and Sorin Gal. On a fuzzy trigonometric approximation theorem of Weierstrass-type, To appear in: *Journal of Fuzzy Mathematics*, **9**, No 3, 2001, Los Angeles.
- [4] Tom M. Apostol. *Mathematical Analysis*, Addison-Wesley Publ. Company, Reading, Massachusetts, 1957.
- [5] S. Gal. Approximation theory in fuzzy setting. Chapter 13, in: Handbook of Analytic Computational Methods in Applied Mathematics (Edited by G. Anastassiou), Chapman & Hall, CRC Press, Boca Raton, New York, 2000, pp. 617-666.
- [6] O. Kaleva. Fuzzy differential equations, Fuzzy Sets and Systems, 24, 1987, 301-317.
- [7] M. L. Puri and D. A. Ralescu. Differentials of fuzzy functions, *J. of Math. Analysis and Appl.*, **91**, 1983, 552-558.
- [8] Murray R. Spiegel. Advanced Calculus, Schaum's Outline Series, McGraw-Hill Book Company, New York, 1963.
- [9] Congxin W u and Zengtai G o n g. On Henstock integral of fuzzy number valued functions (I), Fuzzy Sets and Systems, 120, No 3, 2001, 523-532.
- [10] Congxin W u and Ming M a. On embedding problem of fuzzy number space: Part 1, Fuzzy Sets and Systems, 44, 1991, 33-38.
- [11] Congxin W u and Ming M a. On embedding problem of fuzzy number space: Part 2, Fuzzy Sets and Systems, 45, 1992, 189-202.
- [12] L. A. Zadeh. Fuzzy sets, Information and Control, 8, 1965, 338-353.

Department of Mathematical Sciences The University of Memphis Memphis, TN 38152, USA Received 29.03.2002

e-mail: ganastss@memphis.edu